Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Sep 8;68(Pt 10):o2878. doi: 10.1107/S1600536812037828

Ethyl 3-eth­oxy­carbonyl­methyl-7-methyl-5-phenyl-5H-thia­zolo[3,2-a]pyrimidine-6-carboxyl­ate

H Nagarajaiah a, Noor Shahina Begum a,*
PMCID: PMC3470232  PMID: 23125676

Abstract

In the title compound, C20H22N2O4S, the central pyrimidine ring incorporating a chiral C atom is significantly puckered and adopts a slight boat conformation with C atom bearing the phenyl ring and the N atom opposite displaced by 0.367 (2) and 0.107 (2) Å, respectively, from the plane formed by the remaining ring atoms. The benzene ring is positioned axially to the pyrimidine ring, making a dihedral angle of 88.99 (5)°. The thia­zole ring is essentially planar (r.m.s. deviation = 0.0033 Å). In the crystal, pairs of C—H⋯O inter­actions result in centrosymmetric dimers with graph-set motifs R 1 2(7) and R 2 2(8). A weak C—H⋯π contact is also observed.

Related literature  

For the therapeutic potential of thia­zolopyrimidine derivatives, see: Zhi et al. (2008). For the synthesis of the title compound, see: Nagarajaiah et al. (2012). For a related structure, see: Nagarajaiah & Begum (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995). For carbonyl–π interactions, see: Gautrot et al. (2006).graphic file with name e-68-o2878-scheme1.jpg

Experimental  

Crystal data  

  • C20H22N2O4S

  • M r = 386.46

  • Monoclinic, Inline graphic

  • a = 10.0861 (4) Å

  • b = 7.7954 (3) Å

  • c = 23.4088 (10) Å

  • β = 95.000 (3)°

  • V = 1833.52 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.18 × 0.16 × 0.16 mm

Data collection  

  • Bruker SMART APEX CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998) T min = 0.964, T max = 0.968

  • 11747 measured reflections

  • 3982 independent reflections

  • 3102 reflections with I > 2σ(I)

  • R int = 0.037

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.118

  • S = 1.00

  • 3982 reflections

  • 247 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812037828/pv2584sup1.cif

e-68-o2878-sup1.cif (21.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812037828/pv2584Isup2.hkl

e-68-o2878-Isup2.hkl (191.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812037828/pv2584Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the thia­zolopyrimidine ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17A⋯O2i 0.97 2.47 3.415 (3) 164
C5—H5⋯O2i 0.98 2.59 3.429 (2) 144
C4—H4CCg1ii 0.96 3.03 3.897 (4) 151

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

NSB is thankful to the University Grants Commission (UGC), India, for financial assistance and HN thanks for the fellowship.

supplementary crystallographic information

Comment

Thiazolo[3,2-a]pyrimidine derivatives may be to generate enzyme inhibitors as novel therapeutical entities for severe neurodegenerative diseases (Zhi et al., 2008). In continuation to our research interests on thiazolo[3,2-a]pyrimidine derivatives (Nagarajaiah & Begum, 2011; Nagarajaiah et al. 2012), we report the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzene ring is positioned axially and lies almost perpendicular to the pyrimidine ring (N1/N2/C5/C6/C7/C9) with dihedral angle of 88.99 (5)°. The pyrimidine ring substituted with C5 chiral carbon atom is significantly puckered and adopts a slight boat conformation with N2 and C5 atoms displaced by 0.107 (2) and 0.367 (2) Å, respectively, from the plane formed by the remaining ring atoms. The thiazole ring (S1/N1/C2/C3/C9) is essentially planar with r.m.s.d 0.0033 Å for the fitted atoms. The ethyl carboxylate at C6 is almost co–planar with the thiazolopyrimidine ring with a dihedral angle of 13.40 (5)°, where as the other ethyl carboxylate group at C17 is inclined at an angle of 80.57 (4)° with the thiazolopyrimidine ring and is positioned almost parallel to the benzene ring. This is because of intramolecular carbonyl—π interaction of aryl ring with the ethyl carboxylate group (Gautrot et al., 2006). The exocyclic ester at C8 adopts a cis orientation with respect to C8═C9 double bond. The N1—C3 bond length (1.403 (2) Å) in the thiazole ring is longer than that of a typical C═N bond but shorter than a C—N single bond, indicating electron delocalization in the ring. The bond distances and angles in the title compound agree very well with the corresponding bond distances and angles reported in a closely related compound (Nagarajaiah & Begum, 2011).

The crystal structure is stabilized by C—H···O intermolecular interactions involving carbonyl O2 atom, resulting in centrosymmetric dimers; the seven and eight membered rings thus resulting from these interaction can be described as R21(7) and R22(8) motifs in graph–set notations (Bernstein et al., 1995). In addition π–ring interaction of the type C—H···Cg (Cg being the centroid of the thiazolopyrimidine ring) is also observed in the crystal structure (Table 1 and Fig. 2).

Experimental

The synthesis of the title compound has already been reported (Nagarajaiah et al., 2012). The crystals suitable for X-ray crystallographic analysis were grown from a solution of ethylacetate.

Refinement

The H atoms were placed at calculated positions in the riding model approximation with C—H = 0.93, 0.96, 0.97 and 0.98 Å for aryl, methyl, methylene and methyne H-atoms, respectively, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A view of the intermolecular hydrogen bonding interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity.

Crystal data

C20H22N2O4S F(000) = 816
Mr = 386.46 Dx = 1.400 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3102 reflections
a = 10.0861 (4) Å θ = 1.8–27.0°
b = 7.7954 (3) Å µ = 0.21 mm1
c = 23.4088 (10) Å T = 296 K
β = 95.000 (3)° Block, yellow
V = 1833.52 (13) Å3 0.18 × 0.16 × 0.16 mm
Z = 4

Data collection

Bruker SMART APEX CCD detector diffractometer 3982 independent reflections
Radiation source: fine-focus sealed tube 3102 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.037
ω scans θmax = 27.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 1998) h = −12→12
Tmin = 0.964, Tmax = 0.968 k = −6→9
11747 measured reflections l = −29→29

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0675P)2 + 0.5269P] where P = (Fo2 + 2Fc2)/3
3982 reflections (Δ/σ)max < 0.001
247 parameters Δρmax = 0.50 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.18621 (4) 0.21888 (6) 0.308470 (19) 0.01968 (14)
O1 0.64536 (12) 0.10949 (17) 0.36984 (5) 0.0216 (3)
O2 0.67845 (13) 0.00457 (18) 0.45941 (6) 0.0260 (3)
O3 0.31568 (12) −0.40830 (18) 0.48561 (5) 0.0220 (3)
O4 0.12682 (12) −0.51826 (17) 0.44357 (5) 0.0199 (3)
N1 0.30250 (14) 0.0076 (2) 0.37900 (6) 0.0150 (3)
N2 0.11268 (14) −0.1069 (2) 0.32378 (6) 0.0183 (3)
C1 −0.00093 (18) −0.3634 (3) 0.34719 (8) 0.0228 (4)
H1A 0.0277 −0.4809 0.3477 0.034*
H1B −0.0437 −0.3361 0.3100 0.034*
H1C −0.0625 −0.3465 0.3757 0.034*
C2 0.32329 (18) 0.2865 (3) 0.35279 (7) 0.0189 (4)
H2 0.3582 0.3969 0.3524 0.023*
C3 0.37267 (17) 0.1622 (2) 0.38743 (7) 0.0157 (4)
C4 0.0304 (2) −0.7801 (3) 0.47057 (10) 0.0351 (5)
H4A −0.0546 −0.7244 0.4652 0.053*
H4B 0.0287 −0.8646 0.5003 0.053*
H4C 0.0495 −0.8349 0.4355 0.053*
C5 0.34164 (16) −0.1592 (2) 0.40446 (7) 0.0149 (4)
H5 0.3749 −0.1416 0.4446 0.018*
C6 0.21811 (16) −0.2722 (2) 0.40233 (7) 0.0150 (4)
C7 0.11731 (18) −0.2487 (2) 0.35981 (7) 0.0177 (4)
C8 0.1356 (2) −0.6503 (3) 0.48718 (8) 0.0256 (4)
H8A 0.1217 −0.6011 0.5242 0.031*
H8B 0.2228 −0.7035 0.4896 0.031*
C9 0.19752 (17) 0.0147 (2) 0.33814 (7) 0.0165 (4)
C10 0.22567 (17) −0.4028 (2) 0.44727 (7) 0.0167 (4)
C11 0.44966 (17) −0.2466 (2) 0.37322 (7) 0.0147 (4)
C12 0.54419 (17) −0.3488 (2) 0.40333 (7) 0.0164 (4)
H12 0.5466 −0.3548 0.4431 0.020*
C13 0.63526 (17) −0.4424 (2) 0.37482 (8) 0.0190 (4)
H13 0.6978 −0.5110 0.3955 0.023*
C14 0.63328 (18) −0.4338 (2) 0.31562 (8) 0.0202 (4)
H14 0.6940 −0.4968 0.2965 0.024*
C15 0.54006 (18) −0.3308 (3) 0.28515 (8) 0.0210 (4)
H15 0.5385 −0.3242 0.2454 0.025*
C16 0.44914 (18) −0.2375 (2) 0.31367 (7) 0.0188 (4)
H16 0.3872 −0.1682 0.2929 0.023*
C17 0.48437 (17) 0.1764 (2) 0.43372 (7) 0.0181 (4)
H17A 0.4536 0.1319 0.4689 0.022*
H17B 0.5041 0.2971 0.4399 0.022*
C18 0.61252 (18) 0.0854 (2) 0.42323 (7) 0.0190 (4)
C19 0.76628 (18) 0.0231 (3) 0.35511 (8) 0.0237 (4)
H19A 0.7534 −0.1002 0.3551 0.028*
H19B 0.8397 0.0508 0.3831 0.028*
C20 0.7966 (2) 0.0815 (3) 0.29736 (9) 0.0362 (6)
H20A 0.7213 0.0601 0.2703 0.054*
H20B 0.8724 0.0201 0.2859 0.054*
H20C 0.8156 0.2022 0.2984 0.054*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0253 (2) 0.0184 (3) 0.0147 (2) 0.0029 (2) −0.00124 (17) 0.00322 (18)
O1 0.0244 (6) 0.0245 (8) 0.0158 (6) 0.0014 (6) 0.0020 (5) 0.0011 (5)
O2 0.0318 (7) 0.0281 (8) 0.0173 (7) 0.0032 (6) −0.0033 (5) 0.0032 (6)
O3 0.0260 (7) 0.0255 (8) 0.0138 (6) −0.0037 (6) −0.0028 (5) 0.0060 (5)
O4 0.0233 (6) 0.0185 (7) 0.0180 (6) −0.0037 (6) 0.0021 (5) 0.0045 (5)
N1 0.0186 (7) 0.0158 (8) 0.0103 (7) 0.0005 (6) −0.0001 (5) 0.0002 (6)
N2 0.0208 (7) 0.0194 (9) 0.0141 (7) 0.0005 (7) −0.0015 (6) 0.0011 (6)
C1 0.0219 (9) 0.0263 (11) 0.0194 (9) −0.0026 (8) −0.0033 (7) 0.0028 (8)
C2 0.0241 (9) 0.0169 (10) 0.0158 (9) −0.0006 (8) 0.0018 (7) −0.0022 (7)
C3 0.0212 (8) 0.0151 (10) 0.0113 (8) −0.0003 (7) 0.0038 (6) −0.0020 (7)
C4 0.0472 (13) 0.0245 (12) 0.0348 (12) −0.0122 (11) 0.0094 (10) 0.0019 (10)
C5 0.0208 (8) 0.0151 (10) 0.0084 (8) 0.0001 (7) −0.0004 (6) 0.0011 (6)
C6 0.0182 (8) 0.0152 (10) 0.0118 (8) −0.0012 (7) 0.0021 (6) −0.0012 (7)
C7 0.0203 (9) 0.0192 (10) 0.0138 (8) 0.0020 (8) 0.0027 (6) −0.0010 (7)
C8 0.0347 (10) 0.0195 (11) 0.0230 (10) −0.0028 (9) 0.0043 (8) 0.0070 (8)
C9 0.0209 (8) 0.0192 (10) 0.0094 (8) 0.0038 (8) 0.0011 (6) 0.0005 (7)
C10 0.0198 (8) 0.0172 (10) 0.0133 (8) 0.0008 (8) 0.0035 (7) −0.0012 (7)
C11 0.0179 (8) 0.0130 (10) 0.0129 (8) −0.0031 (7) 0.0004 (6) −0.0002 (7)
C12 0.0209 (8) 0.0159 (10) 0.0122 (8) −0.0033 (7) −0.0006 (6) 0.0017 (7)
C13 0.0205 (8) 0.0158 (10) 0.0201 (9) −0.0012 (8) −0.0017 (7) 0.0004 (7)
C14 0.0216 (9) 0.0187 (10) 0.0209 (9) −0.0013 (8) 0.0054 (7) −0.0043 (8)
C15 0.0254 (9) 0.0265 (11) 0.0112 (8) −0.0017 (8) 0.0018 (7) −0.0012 (7)
C16 0.0211 (9) 0.0224 (11) 0.0125 (8) −0.0010 (8) −0.0008 (7) 0.0028 (7)
C17 0.0246 (9) 0.0170 (10) 0.0125 (8) −0.0026 (8) 0.0005 (7) −0.0010 (7)
C18 0.0259 (9) 0.0160 (10) 0.0146 (9) −0.0043 (8) −0.0013 (7) −0.0017 (7)
C19 0.0230 (9) 0.0238 (11) 0.0243 (10) 0.0029 (8) 0.0013 (7) −0.0007 (8)
C20 0.0342 (11) 0.0451 (15) 0.0307 (12) 0.0145 (11) 0.0109 (9) 0.0093 (10)

Geometric parameters (Å, º)

S1—C9 1.7363 (19) C5—H5 0.9800
S1—C2 1.7367 (19) C6—C7 1.372 (2)
O1—C18 1.334 (2) C6—C10 1.461 (2)
O1—C19 1.460 (2) C8—H8A 0.9700
O2—C18 1.208 (2) C8—H8B 0.9700
O3—C10 1.220 (2) C11—C12 1.387 (2)
O4—C10 1.340 (2) C11—C16 1.395 (2)
O4—C8 1.447 (2) C12—C13 1.388 (3)
N1—C9 1.365 (2) C12—H12 0.9300
N1—C3 1.403 (2) C13—C14 1.386 (3)
N1—C5 1.470 (2) C13—H13 0.9300
N2—C9 1.302 (2) C14—C15 1.386 (3)
N2—C7 1.389 (2) C14—H14 0.9300
C1—C7 1.499 (3) C15—C16 1.386 (3)
C1—H1A 0.9600 C15—H15 0.9300
C1—H1B 0.9600 C16—H16 0.9300
C1—H1C 0.9600 C17—C18 1.513 (3)
C2—C3 1.332 (3) C17—H17A 0.9700
C2—H2 0.9300 C17—H17B 0.9700
C3—C17 1.498 (2) C19—C20 1.483 (3)
C4—C8 1.493 (3) C19—H19A 0.9700
C4—H4A 0.9600 C19—H19B 0.9700
C4—H4B 0.9600 C20—H20A 0.9600
C4—H4C 0.9600 C20—H20B 0.9600
C5—C6 1.523 (2) C20—H20C 0.9600
C5—C11 1.525 (2)
C9—S1—C2 91.05 (9) N2—C9—S1 123.07 (13)
C18—O1—C19 115.91 (14) N1—C9—S1 109.73 (13)
C10—O4—C8 115.64 (14) O3—C10—O4 121.68 (16)
C9—N1—C3 114.51 (15) O3—C10—C6 122.88 (16)
C9—N1—C5 118.99 (15) O4—C10—C6 115.44 (15)
C3—N1—C5 126.05 (14) C12—C11—C16 118.65 (16)
C9—N2—C7 115.87 (15) C12—C11—C5 120.09 (15)
C7—C1—H1A 109.5 C16—C11—C5 121.04 (15)
C7—C1—H1B 109.5 C11—C12—C13 120.78 (16)
H1A—C1—H1B 109.5 C11—C12—H12 119.6
C7—C1—H1C 109.5 C13—C12—H12 119.6
H1A—C1—H1C 109.5 C14—C13—C12 120.20 (17)
H1B—C1—H1C 109.5 C14—C13—H13 119.9
C3—C2—S1 112.24 (15) C12—C13—H13 119.9
C3—C2—H2 123.9 C13—C14—C15 119.50 (17)
S1—C2—H2 123.9 C13—C14—H14 120.3
C2—C3—N1 112.47 (16) C15—C14—H14 120.3
C2—C3—C17 127.16 (17) C14—C15—C16 120.25 (17)
N1—C3—C17 120.27 (16) C14—C15—H15 119.9
C8—C4—H4A 109.5 C16—C15—H15 119.9
C8—C4—H4B 109.5 C15—C16—C11 120.62 (17)
H4A—C4—H4B 109.5 C15—C16—H16 119.7
C8—C4—H4C 109.5 C11—C16—H16 119.7
H4A—C4—H4C 109.5 C3—C17—C18 116.57 (15)
H4B—C4—H4C 109.5 C3—C17—H17A 108.2
N1—C5—C6 107.96 (13) C18—C17—H17A 108.2
N1—C5—C11 112.26 (13) C3—C17—H17B 108.2
C6—C5—C11 110.02 (14) C18—C17—H17B 108.2
N1—C5—H5 108.8 H17A—C17—H17B 107.3
C6—C5—H5 108.8 O2—C18—O1 124.34 (17)
C11—C5—H5 108.8 O2—C18—C17 123.84 (16)
C7—C6—C10 127.18 (16) O1—C18—C17 111.80 (15)
C7—C6—C5 119.94 (16) O1—C19—C20 108.42 (16)
C10—C6—C5 112.84 (14) O1—C19—H19A 110.0
C6—C7—N2 122.04 (17) C20—C19—H19A 110.0
C6—C7—C1 126.17 (17) O1—C19—H19B 110.0
N2—C7—C1 111.77 (15) C20—C19—H19B 110.0
O4—C8—C4 107.47 (16) H19A—C19—H19B 108.4
O4—C8—H8A 110.2 C19—C20—H20A 109.5
C4—C8—H8A 110.2 C19—C20—H20B 109.5
O4—C8—H8B 110.2 H20A—C20—H20B 109.5
C4—C8—H8B 110.2 C19—C20—H20C 109.5
H8A—C8—H8B 108.5 H20A—C20—H20C 109.5
N2—C9—N1 127.15 (17) H20B—C20—H20C 109.5
C9—S1—C2—C3 −0.19 (14) C2—S1—C9—N2 177.08 (15)
S1—C2—C3—N1 0.62 (19) C2—S1—C9—N1 −0.30 (13)
S1—C2—C3—C17 −175.77 (14) C8—O4—C10—O3 −1.0 (2)
C9—N1—C3—C2 −0.9 (2) C8—O4—C10—C6 178.56 (15)
C5—N1—C3—C2 171.25 (15) C7—C6—C10—O3 −175.52 (17)
C9—N1—C3—C17 175.79 (15) C5—C6—C10—O3 6.9 (2)
C5—N1—C3—C17 −12.1 (2) C7—C6—C10—O4 4.9 (3)
C9—N1—C5—C6 −28.50 (19) C5—C6—C10—O4 −172.68 (14)
C3—N1—C5—C6 159.69 (15) N1—C5—C11—C12 147.17 (16)
C9—N1—C5—C11 92.94 (17) C6—C5—C11—C12 −92.58 (19)
C3—N1—C5—C11 −78.87 (19) N1—C5—C11—C16 −38.2 (2)
N1—C5—C6—C7 28.9 (2) C6—C5—C11—C16 82.0 (2)
C11—C5—C6—C7 −93.96 (19) C16—C11—C12—C13 −1.0 (3)
N1—C5—C6—C10 −153.39 (14) C5—C11—C12—C13 173.77 (16)
C11—C5—C6—C10 83.79 (17) C11—C12—C13—C14 0.4 (3)
C10—C6—C7—N2 171.60 (16) C12—C13—C14—C15 0.2 (3)
C5—C6—C7—N2 −11.0 (3) C13—C14—C15—C16 −0.3 (3)
C10—C6—C7—C1 −6.2 (3) C14—C15—C16—C11 −0.3 (3)
C5—C6—C7—C1 171.16 (16) C12—C11—C16—C15 0.9 (3)
C9—N2—C7—C6 −10.1 (2) C5—C11—C16—C15 −173.75 (17)
C9—N2—C7—C1 167.97 (15) C2—C3—C17—C18 −110.7 (2)
C10—O4—C8—C4 −171.20 (16) N1—C3—C17—C18 73.2 (2)
C7—N2—C9—N1 10.8 (3) C19—O1—C18—O2 3.2 (3)
C7—N2—C9—S1 −166.12 (13) C19—O1—C18—C17 −178.60 (15)
C3—N1—C9—N2 −176.53 (16) C3—C17—C18—O2 −138.12 (19)
C5—N1—C9—N2 10.7 (2) C3—C17—C18—O1 43.6 (2)
C3—N1—C9—S1 0.71 (17) C18—O1—C19—C20 −172.85 (17)
C5—N1—C9—S1 −172.02 (11)

Hydrogen-bond geometry (Å, º)

Cg is the centroid of the thiazolopyrimidine ring.

D—H···A D—H H···A D···A D—H···A
C17—H17A···O2i 0.97 2.47 3.415 (3) 164
C5—H5···O2i 0.98 2.59 3.429 (2) 144
C20—H20B···N2ii 0.96 2.70 3.516 (3) 144
C4—H4C···Cg1iii 0.96 3.03 3.897 (4) 151

Symmetry codes: (i) −x+1, −y, −z+1; (ii) x+1, y, z; (iii) x, −y−3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2584).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem Int. Ed. Engl. 34, 1555–1573.
  2. Bruker. (1998). SMART, SAINT-Plus and SADABS Bruker Axs Inc., Madison, Wisconcin, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  5. Gautrot, J. E., Hodge, P., Cupertino, D. & Helliwell, M. (2006). New J. Chem. 30, 1801–1807.
  6. Nagarajaiah, H. & Begum, N. S. (2011). Acta Cryst. E67, o3444. [DOI] [PMC free article] [PubMed]
  7. Nagarajaiah, H., Khazi, I. M. & Begum, N. S. (2012). J. Chem. Sci. 124, 847–855.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON Chemical Crystallography Laboratory, University of Oxford, England.
  10. Zhi, H., Lan-mei, C., Lin-lin, Z., Si-jie, L., David, C. C. W., Huang-quan, L. & Chun, H. (2008). ARKIVOC, xiii, 266–277.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812037828/pv2584sup1.cif

e-68-o2878-sup1.cif (21.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812037828/pv2584Isup2.hkl

e-68-o2878-Isup2.hkl (191.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812037828/pv2584Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES