Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Sep 8;68(Pt 10):o2882–o2883. doi: 10.1107/S1600536812035350

1-(Naphthalen-1-yl)-3-[(thio­phen-2-yl)carbon­yl]thio­urea

Durga P Singh a, Seema Pratap a, Sushil K Gupta b, Ray J Butcher c,*
PMCID: PMC3470236  PMID: 23125680

Abstract

In the title compound, C16H12N2OS2, the dihedral angles between the mean planes of the central thio­urea core and the thio­phene ring and the naphthalene ring system are 1.8 (2) and 6.45 (18)°, respectively. The mol­ecule adopts a trans–cis conformation with respect to the position of thio­phenoyl and naphthyl groups relative to the S atom across the thiourea C—N bonds. Both the thio­phene ring and the sulfanyl­idene S atom are disordered over two sets of sites with occupancies of 0.862 (3):0.138 (3) and 0.977 (3):0.023 (3), respectively. An intra­molecular N—H⋯O hydrogen bond is observed. The crystal packing features two N—H⋯S hydrogen bonds.

Related literature  

For heterocyclic thiourea derivatives, metal complexes and their applications, see: D’hooghe et al. (2005); Aly et al. (2007); Estévez-Hernández et al. (2007); Saeed et al. (2008a ,b ,c ). For related structures, see: Singh et al. (2012); Koch (2001); Pérez et al. (2008). For the synthesis, see: Otazo-Sánchez et al. (2001).graphic file with name e-68-o2882-scheme1.jpg

Experimental  

Crystal data  

  • C16H12N2OS2

  • M r = 312.40

  • Monoclinic, Inline graphic

  • a = 14.929 (2) Å

  • b = 5.9086 (8) Å

  • c = 17.071 (3) Å

  • β = 104.030 (14)°

  • V = 1460.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 173 K

  • 0.35 × 0.25 × 0.15 mm

Data collection  

  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) T min = 0.712, T max = 1.000

  • 4822 measured reflections

  • 2625 independent reflections

  • 1626 reflections with I > 2σ(I)

  • R int = 0.052

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.165

  • S = 1.09

  • 2625 reflections

  • 210 parameters

  • 10 restraints

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812035350/bq2371sup1.cif

e-68-o2882-sup1.cif (20.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812035350/bq2371Isup2.hkl

e-68-o2882-Isup2.hkl (126.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812035350/bq2371Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.88 1.86 2.615 (3) 143
N2—H2A⋯S2B 0.88 2.57 3.026 (14) 113
N2—H2A⋯S1A i 0.88 2.56 3.41 (4) 164
N2—H2A⋯S1B i 0.88 2.80 3.557 (3) 145

Symmetry code: (i) Inline graphic.

Acknowledgments

DPS and SP are grateful to Banaras Hindu University, Varanasi, for financial support. RJB acknowledges the NSF–MRI program (grant No. CHE0619278) for funds to purchase the X-ray diffractometer. SKG wishes to acknowledge the USIEF for the award of a Fulbright–Nehru Senior Research Fellowship.

supplementary crystallographic information

Comment

Aroylythiourea and its derivatives are an important class of organic compounds due to their ability to form a variety of heterocyclic compounds (D'hooghe et al., 2005) and metal complexes that can be used as ionophores in potentiometric and amperometric sensors (Aly et al., 2007; Estévez-Hernández et al., 2007) and as epoxy resin curing agents and accelerators (Saeed et al., 2008a, 2008b, 2008c). The title compound, N-(naphthalen-1-yl)-3-oxo-3-(thiophen-2-yl)propanethioamide is an important precursor with O and S as potential donor sites, and can be used to form heterocycles and metal complexes. We have reported recently the synthesis and crystal structure of methyl 2-(thiophene-2-carboxamido)benzoate (Singh et al., 2012). We herein report the synthesis and crystal structure of the biologically active title compound.

In the title compound (Fig.1) the bond lengths and angles are within the ranges observed for similar compounds (Koch, 2001; Pérez et al., 2008). The C11—S1B [1.661 (3) Å] and C12—O1 [1.230 (3) Å] bonds show typical double-bond character. However, the C—N bond lengths, C12—N2 [1.376 (4) Å], C11—N1 [1.326 (4) Å], C11—N2 [1.397 (4) Å] and C1—N1 [1.419 (4) Å] are all shorter than the normal C—N single-bond length of about 1.48 Å and indicate some degree of delocalization. The central thiourea fragment (N1/C11/N2/C12/O1) makes a dihedral angle of 2.03 (41)° with the major part of the 2-thiophenoyl group (S2/C13/C14/C15/C16) and 6.51 (16)° with the naphthalene ring (C1/C2/C3/C4/C5/C6/C7/C8/C9/C10), respectively. Thus, the conformation is almost planar and adopts a trans-cis configuration with respect to the position of the thiophenoyl and naphthyl groups relative to the S atom across the thiourea C—N bonds. This geometry is stabilized by both an N1—H1···O1 intramolecular hydrogen bond and two intermolecular N—H···S hydrogen bonds (Fig.2). In addition, both the thiophene ring and the thio S are disordered over two positions with occupancies of 0.862 (3)/0.138 (3) and 0.977 (3)/0.023 (3), respectively.

Experimental

The title compound was synthesized according to a previous report (Otazo-Sánchez et al., 2001), by converting furoyl choride into furoyl isothiocyanate and then condensing with α-naphthylamine. The resulting solid product was crystallized from ethanol yielding X-ray quality single crystals (M.P.: 459 K). Anal. Calc. for C16H12N2OS2 (%): C, 61.51; H, 3.87; N, 8.97. Found: C, 61.20; H, 3.80; N, 9.10.

Refinement

H1 was located by a Fourier map and refined isotropically. All of the remaining H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93 Å (CH). Isotropic displacement parameters for these atoms were set to 1.20 (CH) times Ueq of the parent atom. Both the thiophene ring and the thio S are disordered over two positions with occupancies of 0.867 (3)/0.133 (3) and 0.84 (3)/0.16 (3), respectively.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound (major component only) showing the atom labeling scheme and 30% probability displacement ellipsoids. Dashed lines indicate an intramolecular N—H···O hydrogen bond.

Fig. 2.

Fig. 2.

Crystal packing for the title compound viewed along b axis. Dashed lines indicate intramolecular N—H···O and intermolecular N—H···S hydrogen bonds.

Crystal data

C16H12N2OS2 F(000) = 648
Mr = 312.40 Dx = 1.420 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 14.929 (2) Å Cell parameters from 1174 reflections
b = 5.9086 (8) Å θ = 3.3–27.3°
c = 17.071 (3) Å µ = 0.36 mm1
β = 104.030 (14)° T = 173 K
V = 1460.9 (4) Å3 Prism, colorless
Z = 4 0.35 × 0.25 × 0.15 mm

Data collection

Oxford Diffraction Xcalibur Eos diffractometer 2625 independent reflections
Radiation source: Enhance (Mo) X-ray Source 1626 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.052
Detector resolution: 16.0938 pixels mm-1 θmax = 25.5°, θmin = 3.7°
ω scans h = −18→10
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) k = −6→7
Tmin = 0.712, Tmax = 1.000 l = −17→20
4822 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.165 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.058P)2 + 0.3695P] where P = (Fo2 + 2Fc2)/3
2625 reflections (Δ/σ)max < 0.001
210 parameters Δρmax = 0.33 e Å3
10 restraints Δρmin = −0.31 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1A 0.962 (3) 0.732 (11) 0.421 (4) 0.0764 (5) 0.023 (3)
S1B 0.98334 (7) 0.6323 (3) 0.38685 (9) 0.0764 (5) 0.977 (3)
S2A 0.66455 (8) −0.0348 (2) 0.46547 (8) 0.0582 (4) 0.862 (3)
C13A 0.7707 (3) 0.0902 (7) 0.4715 (3) 0.0404 (11) 0.862 (3)
C14A 0.8378 (4) −0.0413 (13) 0.5210 (5) 0.0655 (19) 0.862 (3)
H14A 0.9018 −0.0083 0.5310 0.079* 0.862 (3)
C15A 0.8041 (4) −0.2228 (11) 0.5543 (4) 0.0655 (15) 0.862 (3)
H15A 0.8419 −0.3270 0.5900 0.079* 0.862 (3)
C16A 0.7114 (4) −0.2380 (12) 0.5309 (6) 0.0695 (14) 0.862 (3)
H16A 0.6765 −0.3515 0.5496 0.083* 0.862 (3)
S2B 0.8612 (8) −0.036 (2) 0.5239 (9) 0.0582 (4) 0.138 (3)
C13B 0.7593 (17) 0.051 (5) 0.4590 (19) 0.0404 (11) 0.138 (3)
C14B 0.6895 (17) −0.046 (5) 0.488 (2) 0.0655 (19) 0.138 (3)
H14B 0.6294 0.0174 0.4803 0.079* 0.138 (3)
C15B 0.716 (2) −0.242 (7) 0.530 (4) 0.0655 (15) 0.138 (3)
H15B 0.6767 −0.3658 0.5338 0.079* 0.138 (3)
C16B 0.807 (2) −0.233 (7) 0.566 (3) 0.0695 (14) 0.138 (3)
H16B 0.8373 −0.3273 0.6097 0.083* 0.138 (3)
O1 0.69721 (14) 0.3590 (3) 0.37691 (14) 0.0546 (6)
N1 0.79871 (16) 0.6726 (4) 0.33310 (16) 0.0440 (7)
H1A 0.7462 0.6094 0.3360 0.053*
N2 0.85320 (16) 0.3884 (4) 0.42315 (16) 0.0452 (7)
H2A 0.9009 0.3300 0.4579 0.054*
C1 0.7879 (2) 0.8627 (5) 0.28085 (19) 0.0432 (8)
C2 0.8584 (2) 1.0074 (5) 0.2753 (2) 0.0541 (9)
H2 0.9196 0.9774 0.3054 0.065*
C3 0.8401 (3) 1.1985 (5) 0.2255 (2) 0.0585 (10)
H3 0.8894 1.2973 0.2223 0.070*
C4 0.7537 (3) 1.2454 (5) 0.1817 (2) 0.0570 (9)
H4 0.7429 1.3778 0.1492 0.068*
C5 0.6798 (2) 1.0997 (5) 0.1838 (2) 0.0468 (8)
C6 0.5901 (3) 1.1427 (6) 0.1368 (2) 0.0594 (10)
H6 0.5788 1.2741 0.1038 0.071*
C7 0.5189 (3) 0.9981 (6) 0.1379 (2) 0.0659 (11)
H7 0.4587 1.0297 0.1060 0.079*
C8 0.5347 (2) 0.8048 (6) 0.1857 (2) 0.0574 (10)
H8 0.4851 0.7044 0.1859 0.069*
C9 0.6200 (2) 0.7578 (5) 0.2319 (2) 0.0494 (9)
H9 0.6291 0.6249 0.2642 0.059*
C10 0.6962 (2) 0.9031 (5) 0.23326 (19) 0.0416 (8)
C11 0.8727 (2) 0.5719 (5) 0.37841 (19) 0.0434 (8)
C12 0.7696 (2) 0.2864 (5) 0.4203 (2) 0.0433 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1A 0.0282 (5) 0.1166 (10) 0.0801 (9) −0.0049 (6) 0.0048 (5) 0.0291 (8)
S1B 0.0282 (5) 0.1166 (10) 0.0801 (9) −0.0049 (6) 0.0048 (5) 0.0291 (8)
S2A 0.0543 (7) 0.0566 (6) 0.0598 (9) −0.0107 (6) 0.0061 (5) 0.0071 (6)
C13A 0.0405 (19) 0.035 (2) 0.041 (2) −0.0003 (16) 0.0015 (16) −0.0068 (18)
C14A 0.057 (4) 0.064 (3) 0.077 (4) 0.000 (3) 0.020 (4) −0.010 (2)
C15A 0.091 (4) 0.048 (2) 0.051 (3) 0.023 (3) 0.004 (3) 0.006 (2)
C16A 0.090 (4) 0.053 (3) 0.063 (3) −0.015 (3) 0.015 (3) 0.002 (2)
S2B 0.0543 (7) 0.0566 (6) 0.0598 (9) −0.0107 (6) 0.0061 (5) 0.0071 (6)
C13B 0.0405 (19) 0.035 (2) 0.041 (2) −0.0003 (16) 0.0015 (16) −0.0068 (18)
C14B 0.057 (4) 0.064 (3) 0.077 (4) 0.000 (3) 0.020 (4) −0.010 (2)
C15B 0.091 (4) 0.048 (2) 0.051 (3) 0.023 (3) 0.004 (3) 0.006 (2)
C16B 0.090 (4) 0.053 (3) 0.063 (3) −0.015 (3) 0.015 (3) 0.002 (2)
O1 0.0340 (12) 0.0537 (13) 0.0694 (16) −0.0034 (10) −0.0006 (11) 0.0150 (12)
N1 0.0286 (13) 0.0453 (14) 0.0541 (17) −0.0030 (11) 0.0021 (12) 0.0007 (13)
N2 0.0302 (13) 0.0547 (15) 0.0472 (16) 0.0030 (12) 0.0026 (11) 0.0113 (13)
C1 0.0381 (17) 0.0383 (15) 0.0503 (19) −0.0019 (14) 0.0050 (14) −0.0047 (14)
C2 0.0455 (19) 0.0503 (18) 0.067 (2) −0.0095 (16) 0.0136 (17) −0.0035 (17)
C3 0.063 (2) 0.0504 (18) 0.068 (2) −0.0188 (18) 0.0281 (19) −0.0075 (18)
C4 0.072 (2) 0.0452 (17) 0.059 (2) −0.0030 (19) 0.0254 (19) 0.0032 (16)
C5 0.0516 (19) 0.0406 (16) 0.050 (2) 0.0058 (16) 0.0165 (16) −0.0023 (15)
C6 0.062 (2) 0.057 (2) 0.059 (2) 0.0175 (19) 0.0146 (19) 0.0156 (18)
C7 0.051 (2) 0.075 (2) 0.067 (3) 0.018 (2) 0.0062 (19) 0.017 (2)
C8 0.0409 (19) 0.064 (2) 0.065 (2) 0.0007 (17) 0.0078 (17) 0.0111 (19)
C9 0.0421 (18) 0.0506 (17) 0.052 (2) −0.0010 (16) 0.0044 (15) 0.0080 (16)
C10 0.0387 (17) 0.0380 (15) 0.0477 (19) 0.0024 (14) 0.0092 (14) −0.0061 (14)
C11 0.0342 (16) 0.0593 (18) 0.0356 (17) −0.0004 (15) 0.0065 (13) 0.0002 (15)
C12 0.0322 (16) 0.0423 (16) 0.0513 (19) 0.0028 (14) 0.0023 (14) −0.0017 (15)

Geometric parameters (Å, º)

S1A—C11 1.65 (5) N1—H1A 0.8800
S1B—C11 1.661 (3) N2—C12 1.376 (4)
S2A—C16A 1.674 (6) N2—C11 1.397 (4)
S2A—C13A 1.729 (4) N2—H2A 0.8800
C13A—C14A 1.383 (7) C1—C2 1.377 (4)
C13A—C12 1.449 (5) C1—C10 1.432 (4)
C14A—C15A 1.365 (8) C2—C3 1.401 (5)
C14A—H14A 0.9500 C2—H2 0.9500
C15A—C16A 1.347 (6) C3—C4 1.353 (5)
C15A—H15A 0.9500 C3—H3 0.9500
C16A—H16A 0.9500 C4—C5 1.408 (5)
S2B—C16B 1.67 (2) C4—H4 0.9500
S2B—C13B 1.728 (19) C5—C6 1.407 (4)
C13B—C14B 1.39 (2) C5—C10 1.422 (4)
C13B—C12 1.56 (3) C6—C7 1.367 (5)
C14B—C15B 1.37 (2) C6—H6 0.9500
C14B—H14B 0.9500 C7—C8 1.390 (5)
C15B—C16B 1.350 (18) C7—H7 0.9500
C15B—H15B 0.9500 C8—C9 1.354 (4)
C16B—H16B 0.9500 C8—H8 0.9500
O1—C12 1.230 (3) C9—C10 1.421 (4)
N1—C11 1.326 (4) C9—H9 0.9500
N1—C1 1.419 (4)
C16A—S2A—C13A 92.2 (2) C3—C2—H2 119.9
C14A—C13A—C12 136.0 (5) C4—C3—C2 121.3 (3)
C14A—C13A—S2A 108.3 (4) C4—C3—H3 119.3
C12—C13A—S2A 115.4 (3) C2—C3—H3 119.3
C15A—C14A—C13A 114.2 (5) C3—C4—C5 120.6 (3)
C15A—C14A—H14A 122.9 C3—C4—H4 119.7
C13A—C14A—H14A 122.9 C5—C4—H4 119.7
C16A—C15A—C14A 112.6 (5) C4—C5—C6 121.3 (3)
C16A—C15A—H15A 123.7 C4—C5—C10 119.4 (3)
C14A—C15A—H15A 123.7 C6—C5—C10 119.3 (3)
C15A—C16A—S2A 112.5 (5) C7—C6—C5 121.0 (3)
C15A—C16A—H16A 123.7 C7—C6—H6 119.5
S2A—C16A—H16A 123.7 C5—C6—H6 119.5
C16B—S2B—C13B 92.5 (12) C6—C7—C8 119.9 (3)
C14B—C13B—C12 133 (2) C6—C7—H7 120.0
C14B—C13B—S2B 105.6 (15) C8—C7—H7 120.0
C12—C13B—S2B 112.0 (16) C9—C8—C7 120.8 (3)
C15B—C14B—C13B 113 (2) C9—C8—H8 119.6
C15B—C14B—H14B 123.6 C7—C8—H8 119.6
C13B—C14B—H14B 123.6 C8—C9—C10 121.4 (3)
C16B—C15B—C14B 110 (2) C8—C9—H9 119.3
C16B—C15B—H15B 125.2 C10—C9—H9 119.3
C14B—C15B—H15B 125.2 C9—C10—C5 117.5 (3)
C15B—C16B—S2B 112 (2) C9—C10—C1 124.0 (3)
C15B—C16B—H16B 124.2 C5—C10—C1 118.5 (3)
S2B—C16B—H16B 124.2 N1—C11—N2 114.4 (3)
C11—N1—C1 132.4 (3) N1—C11—S1A 118 (2)
C11—N1—H1A 113.8 N2—C11—S1A 117.1 (18)
C1—N1—H1A 113.8 N1—C11—S1B 128.6 (3)
C12—N2—C11 128.9 (2) N2—C11—S1B 117.0 (2)
C12—N2—H2A 115.5 S1A—C11—S1B 33 (3)
C11—N2—H2A 115.5 O1—C12—N2 121.7 (3)
C2—C1—N1 124.2 (3) O1—C12—C13A 121.5 (3)
C2—C1—C10 119.9 (3) N2—C12—C13A 116.8 (3)
N1—C1—C10 115.9 (3) O1—C12—C13B 113.8 (9)
C1—C2—C3 120.2 (3) N2—C12—C13B 123.8 (9)
C1—C2—H2 119.9 C13A—C12—C13B 11.9 (13)
C16A—S2A—C13A—C14A 3.3 (6) C4—C5—C10—C9 −178.4 (3)
C16A—S2A—C13A—C12 178.1 (5) C6—C5—C10—C9 0.4 (5)
C12—C13A—C14A—C15A −176.1 (6) C4—C5—C10—C1 1.4 (4)
S2A—C13A—C14A—C15A −2.9 (8) C6—C5—C10—C1 −179.8 (3)
C13A—C14A—C15A—C16A 0.8 (11) C2—C1—C10—C9 176.9 (3)
C14A—C15A—C16A—S2A 1.9 (11) N1—C1—C10—C9 −4.5 (5)
C13A—S2A—C16A—C15A −3.0 (8) C2—C1—C10—C5 −2.8 (5)
C16B—S2B—C13B—C14B 13 (4) N1—C1—C10—C5 175.8 (3)
C16B—S2B—C13B—C12 164 (3) C1—N1—C11—N2 178.7 (3)
C12—C13B—C14B—C15B −169 (4) C1—N1—C11—S1A 35 (3)
S2B—C13B—C14B—C15B −27 (5) C1—N1—C11—S1B −2.6 (5)
C13B—C14B—C15B—C16B 30 (6) C12—N2—C11—N1 7.1 (5)
C14B—C15B—C16B—S2B −19 (7) C12—N2—C11—S1A 151 (3)
C13B—S2B—C16B—C15B 3 (5) C12—N2—C11—S1B −171.6 (3)
C11—N1—C1—C2 −9.6 (5) C11—N2—C12—O1 −3.4 (5)
C11—N1—C1—C10 171.8 (3) C11—N2—C12—C13A 177.1 (3)
N1—C1—C2—C3 −176.2 (3) C11—N2—C12—C13B 165.9 (17)
C10—C1—C2—C3 2.3 (5) C14A—C13A—C12—O1 174.0 (6)
C1—C2—C3—C4 −0.2 (5) S2A—C13A—C12—O1 1.2 (5)
C2—C3—C4—C5 −1.3 (5) C14A—C13A—C12—N2 −6.5 (8)
C3—C4—C5—C6 −178.1 (3) S2A—C13A—C12—N2 −179.4 (3)
C3—C4—C5—C10 0.7 (5) C14A—C13A—C12—C13B 122 (7)
C4—C5—C6—C7 178.6 (4) S2A—C13A—C12—C13B −51 (6)
C10—C5—C6—C7 −0.2 (5) C14B—C13B—C12—O1 −36 (4)
C5—C6—C7—C8 −0.3 (6) S2B—C13B—C12—O1 −176.6 (15)
C6—C7—C8—C9 0.4 (6) C14B—C13B—C12—N2 154 (3)
C7—C8—C9—C10 −0.2 (5) S2B—C13B—C12—N2 13 (3)
C8—C9—C10—C5 −0.3 (5) C14B—C13B—C12—C13A 96 (9)
C8—C9—C10—C1 180.0 (3) S2B—C13B—C12—C13A −44 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O1 0.88 1.86 2.615 (3) 143
N2—H2A···S2B 0.88 2.57 3.026 (14) 113
N2—H2A···S1Ai 0.88 2.56 3.41 (4) 164
N2—H2A···S1Bi 0.88 2.80 3.557 (3) 145

Symmetry code: (i) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2371).

References

  1. Aly, A. A., Ahmed, E. K., El-Mokadem, K. M. & Hegazy, M. E. F. (2007). J. Sulfur Chem. 28, 73–93.
  2. D’hooghe, M., Waterinckx, A. & De Kimpe, N. (2005). J. Org. Chem. 70, 227–232. [DOI] [PubMed]
  3. Estévez-Hernández, O., Hidalgo-Hidalgo de Cisneros, J. L., Reguera, E. & Naranjo-Rodríguez, I. (2007). Sens. Actuators B Chem. 120, 766–772.
  4. Koch, K. R. (2001). Coord. Chem. Rev. 216–217, 473–488.
  5. Otazo-Sánchez, E., Pérez-Marín, L., Estévez-Hernández, O., Rojas-Lima, S. & Alonso-Chamorro, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211–2218.
  6. Oxford Diffraction (2007). CrysAlis PRO Oxford Diffraction Ltd, Abingdon, England.
  7. Pérez, H., Mascarenhas, Y., Estévez-Hernández, O., Santos Jr, S. & Duque, J. (2008). Acta Cryst. E64, o513. [DOI] [PMC free article] [PubMed]
  8. Saeed, S., Bhatti, M. H., Tahir, M. K. & Jones, P. G. (2008a). Acta Cryst. E64, o1369. [DOI] [PMC free article] [PubMed]
  9. Saeed, S., Bhatti, M. H., Yunus, U. & Jones, P. G. (2008b). Acta Cryst. E64, o1485. [DOI] [PMC free article] [PubMed]
  10. Saeed, S., Bhatti, M. H., Yunus, U. & Jones, P. G. (2008c). Acta Cryst. E64, o1566. [DOI] [PMC free article] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Singh, D. P., Pratap, S., Butcher, R. J. & Gupta, S. K. (2012). Acta Cryst. E68, o1765. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812035350/bq2371sup1.cif

e-68-o2882-sup1.cif (20.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812035350/bq2371Isup2.hkl

e-68-o2882-Isup2.hkl (126.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812035350/bq2371Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES