Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Sep 8;68(Pt 10):o2886–o2887. doi: 10.1107/S1600536812037841

4-[(2E)-2-(2-Hy­droxy­benzyl­idene)hydrazin-1-yl]benzonitrile

Shaaban K Mohamed a,*, Goran A Bogdanović b, Antar A Abdelhamid a, Sladjana B Novaković b, Herman Potgeiter c
PMCID: PMC3470239  PMID: 23125683

Abstract

The asymmetric unit of the title Schiff base, C14H11N3O, contains two independent mol­ecules which have similar conformations. The dihedral angles between the benzene rings are 4.19 (9) and 14.18 (9)° in the two mol­ecules. An intra­molecular O—H⋯N hydrogen bond stabilizes the mol­ecular conformation of each mol­ecules. The crystal packing is dominated by pairs of equivalent N—H⋯N and C—H⋯O hydrogen bonds which arrange the mol­ecules into layers parallel to (-111).

Related literature  

For azomethines, see: Archibald et al. (1994); Harada et al. (1999); Ogawa et al. (1998). For the biological properties of Schiff bases, see: Lozier et al. (1975); Dao et al. (2000). For their coordination chemistry, see: Kargar et al. (2009); Yeap et al. (2009). For the structure of related Schiff bases reported by our group, see: Mohamed, Abdelhamid et al. (2012); Mohamed, Akkurt et al. (2012).graphic file with name e-68-o2886-scheme1.jpg

Experimental  

Crystal data  

  • C14H11N3O

  • M r = 237.26

  • Triclinic, Inline graphic

  • a = 8.1917 (7) Å

  • b = 11.6406 (7) Å

  • c = 13.4445 (8) Å

  • α = 103.006 (5)°

  • β = 104.387 (6)°

  • γ = 96.426 (6)°

  • V = 1190.67 (14) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.70 mm−1

  • T = 293 K

  • 0.26 × 0.15 × 0.14 mm

Data collection  

  • Oxford Diffraction Xcalibur (Sapphire3, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) T min = 0.827, T max = 1.000

  • 7913 measured reflections

  • 4592 independent reflections

  • 3696 reflections with I > 2σ(I)

  • R int = 0.020

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.121

  • S = 1.05

  • 4592 reflections

  • 341 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006)’; software used to prepare material for publication: WinGX (Farrugia, 1999), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812037841/rz2800sup1.cif

e-68-o2886-sup1.cif (28.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812037841/rz2800Isup2.hkl

e-68-o2886-Isup2.hkl (220.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812037841/rz2800Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1OA⋯N1A 0.98 (2) 1.77 (2) 2.654 (2) 149 (2)
O1B—H1OB⋯N1B 0.90 (2) 1.86 (2) 2.653 (2) 147 (2)
N2A—H1NA⋯N3B i 0.91 (2) 2.17 (2) 3.065 (2) 166 (2)
N2B—H1NB⋯N3A ii 0.89 (2) 2.25 (2) 3.098 (2) 158 (2)
C7A—H7A⋯O1B iii 0.93 2.55 3.427 (2) 156
C7B—H7B⋯O1A iv 0.93 2.49 3.413 (2) 172

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

We thank Manchester Metropolitan University for providing X-ray analysis and data refinement facilities. SBN and GAB thank the Ministry of Education, Science and Technological Development of the Republic of Serbia for financial support (projects 172014 and 172035).

supplementary crystallographic information

Comment

Schiff bases have received much attention in recent years (Ogawa et al., 1998; Archibald et al., 1994; Harada et al., 1999) due to their various biological activities and metal chelating properties. In many cases, they were shown to have antibacterial, anticancer, anti- inflammatory and antitoxic properties (Lozier et al., 1975; Dao et al., 2000) and have also been used as versatile ligands in coordination chemistry (Kargar et al., 2009; Yeap et al., 2009). Recently, we reported on the crystal structures of two new Schiff bases (Mohamed, Abdelhamid et al., 2012; Mohamed, Akkurt et al., 2012). As a further investigation of the structures of Schiff base compounds, herin we report the synthesis and crystal structure of the title compound (I) which was obtained unintentionally from the component reaction of cyclohexan-1,3-dione, salicylaldehyde and 4- hydrazinylbenzonitrile in ethanol.

The title compound crystallizes with two independent molecules (A and B) in the asymmetric unit, Fig. 1. The molecules A and B have similar conformation and approximately planar form. In molecules A and B the dihedral angle between the corresponding aromatic rings is 4.19 (9) and 14.18 (9)°, respectively. The torsion angles C8—N2—N1—C1 and N2—N1—C1—C2, within the fragment which connects the rings, are 179.44 (14)/-179.93 (13) and 175.41 (13)/177.44 (12)°, in molecules A and B respectively. All these parameters suggest a somewhat higher planarity of molecule A in comparison to molecule B. The molecules of each type are stabilized by the cyclic intramolecular O1—H1o···N1 hydrogen bond (Table 1). In the crystal packing the A and B molecules mutually interact by the pairs of the strongest N2—H1n···N3 hydrogen bonds (Table 1) which engage the hydrazine donor and the nitirile acceptor from each type of molecule. The chains consisting of A and B molecules further interact by another pair of equivalent C7—H7···O1 interactions to give two dimensional lyres (Fig 2). The interaction between the parallel lyres towards the three-dimensional crystal packing is mostly based on weak van der Waals interactions.

Experimental

The title compound was prepared unintentionally as a major product from reaction of 112 mg (1 mmol) cyclohexane-1,3-dione, 133 mg (1 mmol) 4-hydrazinylbenzonitrile and 122 mg (1 mmol) salicylaldehyde in 50 ml ethanol. The reaction mixture was refluxed for 5 h. The excess solvent was evaporated under vacuum and the residual resins was triturated with cold acetone. The obtained solid was collected by filtration, dried and washed with acetone. Single crystals suitable for X-ray diffraction were grown from acetone solution of (I) using the slow evaporation method. M. p. 469 K.

Refinement

H atoms bonded to C atoms were placed at calculated positions, with C—H distances fixed at 0.93 Å and isotropic displacement parameters set equal to 1.2Ueq of the parent C(sp2) atoms. H atoms attached to N and O were located in difference Fourier map and refined isotropically.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with atom numbering scheme. Displacement ellipsoids are drawn at the 35% probability level.

Fig. 2.

Fig. 2.

Two dimensional arrangement of A and B molecules via N—H···N and C—H···O hydrogen bonds.

Crystal data

C14H11N3O Z = 4
Mr = 237.26 F(000) = 496
Triclinic, P1 Dx = 1.324 Mg m3
Hall symbol: -P 1 Cu Kα radiation, λ = 1.5418 Å
a = 8.1917 (7) Å Cell parameters from 3110 reflections
b = 11.6406 (7) Å θ = 3.5–72.5°
c = 13.4445 (8) Å µ = 0.70 mm1
α = 103.006 (5)° T = 293 K
β = 104.387 (6)° Prismatic, colorless
γ = 96.426 (6)° 0.26 × 0.15 × 0.14 mm
V = 1190.67 (14) Å3

Data collection

Oxford Diffraction Xcalibur (Sapphire3, Gemini) diffractometer 4592 independent reflections
Radiation source: Enhance (Cu) X-ray Source 3696 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.020
Detector resolution: 16.3280 pixels mm-1 θmax = 72.6°, θmin = 3.5°
ω scans h = −9→10
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) k = −14→13
Tmin = 0.827, Tmax = 1.000 l = −16→14
7913 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0591P)2 + 0.1257P] where P = (Fo2 + 2Fc2)/3
4592 reflections (Δ/σ)max < 0.001
341 parameters Δρmax = 0.16 e Å3
0 restraints Δρmin = −0.14 e Å3

Special details

Experimental. Absorption correction: Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. 'CrysAlisPro (Oxford Diffraction, 2009)'

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1A 0.48536 (17) 0.59328 (11) 0.66183 (10) 0.0784 (4)
O1B 0.91964 (17) −0.08146 (11) 0.25880 (10) 0.0774 (4)
N1A 0.22126 (15) 0.44483 (11) 0.51588 (9) 0.0526 (3)
N1B 0.93383 (15) 0.06285 (11) 0.13286 (9) 0.0522 (3)
N2A 0.09712 (17) 0.40478 (12) 0.42146 (10) 0.0596 (3)
N2B 0.87286 (17) 0.10497 (12) 0.04621 (10) 0.0602 (3)
N3A −0.0385 (2) 0.69952 (14) 0.03913 (11) 0.0808 (5)
N3B 0.20536 (19) −0.19989 (13) −0.37048 (11) 0.0718 (4)
C1A 0.22866 (18) 0.37735 (12) 0.58006 (11) 0.0515 (3)
H1A 0.1506 0.3060 0.5593 0.062*
C1B 1.06978 (18) 0.12410 (12) 0.20323 (11) 0.0497 (3)
H1B 1.1242 0.1924 0.1917 0.060*
C2A 0.35367 (18) 0.40831 (12) 0.68322 (11) 0.0480 (3)
C2B 1.14175 (17) 0.09042 (12) 0.30040 (11) 0.0475 (3)
C3A 0.47572 (19) 0.51421 (13) 0.72128 (12) 0.0536 (3)
C3B 1.0654 (2) −0.00961 (13) 0.32475 (12) 0.0549 (3)
C4A 0.5895 (2) 0.54087 (15) 0.82180 (13) 0.0662 (4)
H4A 0.6707 0.6109 0.8464 0.079*
C4B 1.1394 (2) −0.03657 (15) 0.41970 (13) 0.0676 (4)
H4B 1.0883 −0.1025 0.4362 0.081*
C5A 0.5828 (2) 0.46422 (17) 0.88535 (13) 0.0706 (5)
H5A 0.6591 0.4832 0.9531 0.085*
C5B 1.2868 (2) 0.03347 (17) 0.48887 (13) 0.0735 (5)
H5B 1.3355 0.0142 0.5519 0.088*
C6A 0.4644 (2) 0.35943 (17) 0.84996 (13) 0.0703 (4)
H6A 0.4605 0.3079 0.8934 0.084*
C6B 1.3643 (2) 0.13218 (16) 0.46669 (13) 0.0695 (4)
H6B 1.4646 0.1793 0.5142 0.083*
C7A 0.3520 (2) 0.33197 (14) 0.74959 (12) 0.0600 (4)
H7A 0.2730 0.2608 0.7254 0.072*
C7B 1.29124 (19) 0.16031 (14) 0.37294 (12) 0.0574 (4)
H7B 1.3429 0.2272 0.3580 0.069*
C8A 0.07493 (18) 0.46900 (12) 0.34649 (11) 0.0511 (3)
C8B 0.73501 (18) 0.04005 (13) −0.03593 (11) 0.0507 (3)
C9A 0.1698 (2) 0.58289 (14) 0.36363 (12) 0.0589 (4)
H9A 0.2530 0.6184 0.4279 0.071*
C9B 0.66057 (19) −0.07671 (13) −0.04234 (12) 0.0549 (3)
H9B 0.7039 −0.1134 0.0108 0.066*
C10A 0.1391 (2) 0.64216 (14) 0.28470 (12) 0.0622 (4)
H10A 0.2015 0.7182 0.2965 0.075*
C10B 0.5233 (2) −0.13687 (13) −0.12740 (12) 0.0571 (4)
H10B 0.4750 −0.2146 −0.1314 0.068*
C11A 0.0169 (2) 0.59024 (13) 0.18796 (12) 0.0558 (4)
C11B 0.45513 (19) −0.08366 (13) −0.20774 (11) 0.0539 (3)
C12A −0.0775 (2) 0.47666 (14) 0.17121 (12) 0.0587 (4)
H12A −0.1604 0.4412 0.1068 0.070*
C12B 0.5284 (2) 0.03318 (14) −0.20013 (12) 0.0595 (4)
H12B 0.4834 0.0704 −0.2526 0.071*
C13A −0.0485 (2) 0.41730 (13) 0.24934 (11) 0.0575 (4)
H13A −0.1118 0.3416 0.2374 0.069*
C13B 0.6654 (2) 0.09324 (13) −0.11637 (12) 0.0582 (4)
H13B 0.7134 0.1709 −0.1127 0.070*
C14A −0.0144 (2) 0.65174 (15) 0.10526 (13) 0.0638 (4)
C14B 0.3157 (2) −0.14810 (14) −0.29808 (13) 0.0587 (4)
H1NA 0.021 (2) 0.3362 (16) 0.4094 (14) 0.077 (5)*
H1NB 0.934 (2) 0.1706 (16) 0.0406 (13) 0.072 (5)*
H1OA 0.397 (3) 0.559 (2) 0.5941 (17) 0.103 (7)*
H1OB 0.886 (3) −0.0526 (18) 0.2020 (16) 0.090 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1A 0.0813 (8) 0.0629 (7) 0.0783 (8) −0.0142 (6) −0.0038 (7) 0.0360 (6)
O1B 0.0827 (8) 0.0657 (7) 0.0713 (7) −0.0186 (6) 0.0021 (6) 0.0304 (6)
N1A 0.0542 (7) 0.0505 (6) 0.0489 (6) 0.0056 (5) 0.0068 (5) 0.0149 (5)
N1B 0.0551 (7) 0.0543 (7) 0.0490 (6) 0.0068 (5) 0.0130 (5) 0.0201 (5)
N2A 0.0620 (8) 0.0531 (7) 0.0537 (7) −0.0011 (6) −0.0009 (6) 0.0186 (6)
N2B 0.0639 (8) 0.0588 (7) 0.0542 (7) −0.0017 (6) 0.0061 (6) 0.0255 (6)
N3A 0.0952 (11) 0.0772 (10) 0.0642 (8) −0.0075 (8) 0.0078 (8) 0.0344 (8)
N3B 0.0674 (9) 0.0678 (9) 0.0666 (8) −0.0049 (7) 0.0042 (7) 0.0149 (7)
C1A 0.0532 (8) 0.0452 (7) 0.0546 (8) 0.0044 (6) 0.0127 (6) 0.0150 (6)
C1B 0.0511 (7) 0.0469 (7) 0.0535 (7) 0.0052 (6) 0.0171 (6) 0.0170 (6)
C2A 0.0508 (7) 0.0456 (7) 0.0499 (7) 0.0109 (6) 0.0147 (6) 0.0154 (6)
C2B 0.0489 (7) 0.0467 (7) 0.0487 (7) 0.0097 (6) 0.0160 (6) 0.0131 (6)
C3A 0.0546 (8) 0.0493 (7) 0.0563 (8) 0.0079 (6) 0.0107 (6) 0.0190 (6)
C3B 0.0598 (8) 0.0494 (8) 0.0547 (8) 0.0055 (6) 0.0142 (7) 0.0165 (6)
C4A 0.0608 (9) 0.0606 (9) 0.0655 (10) 0.0049 (7) 0.0017 (7) 0.0142 (8)
C4B 0.0817 (11) 0.0636 (10) 0.0624 (9) 0.0119 (8) 0.0186 (8) 0.0291 (8)
C5A 0.0726 (11) 0.0796 (11) 0.0534 (9) 0.0201 (9) 0.0019 (8) 0.0198 (8)
C5B 0.0836 (12) 0.0823 (12) 0.0557 (9) 0.0239 (10) 0.0102 (8) 0.0265 (9)
C6A 0.0845 (12) 0.0761 (11) 0.0603 (9) 0.0232 (9) 0.0188 (8) 0.0351 (8)
C6B 0.0619 (9) 0.0756 (11) 0.0581 (9) 0.0098 (8) 0.0015 (7) 0.0103 (8)
C7A 0.0683 (9) 0.0538 (8) 0.0617 (9) 0.0086 (7) 0.0180 (7) 0.0242 (7)
C7B 0.0532 (8) 0.0548 (8) 0.0602 (8) 0.0051 (6) 0.0139 (7) 0.0116 (7)
C8A 0.0539 (8) 0.0500 (7) 0.0495 (7) 0.0119 (6) 0.0120 (6) 0.0150 (6)
C8B 0.0521 (8) 0.0523 (8) 0.0488 (7) 0.0081 (6) 0.0152 (6) 0.0151 (6)
C9A 0.0634 (9) 0.0555 (8) 0.0499 (8) 0.0006 (7) 0.0058 (7) 0.0140 (6)
C9B 0.0594 (8) 0.0542 (8) 0.0547 (8) 0.0100 (6) 0.0156 (7) 0.0226 (6)
C10A 0.0691 (10) 0.0536 (8) 0.0599 (9) −0.0006 (7) 0.0134 (7) 0.0180 (7)
C10B 0.0604 (9) 0.0495 (8) 0.0625 (9) 0.0053 (6) 0.0192 (7) 0.0173 (7)
C11A 0.0605 (9) 0.0572 (8) 0.0527 (8) 0.0104 (7) 0.0152 (7) 0.0211 (7)
C11B 0.0520 (8) 0.0563 (8) 0.0518 (8) 0.0065 (6) 0.0147 (6) 0.0128 (6)
C12A 0.0597 (9) 0.0593 (9) 0.0510 (8) 0.0072 (7) 0.0049 (7) 0.0160 (7)
C12B 0.0637 (9) 0.0586 (9) 0.0551 (8) 0.0080 (7) 0.0093 (7) 0.0226 (7)
C13A 0.0608 (9) 0.0486 (8) 0.0558 (8) 0.0032 (6) 0.0058 (7) 0.0140 (6)
C13B 0.0629 (9) 0.0515 (8) 0.0578 (8) 0.0025 (7) 0.0094 (7) 0.0218 (7)
C14A 0.0679 (10) 0.0624 (9) 0.0581 (9) 0.0013 (7) 0.0112 (7) 0.0219 (7)
C14B 0.0591 (9) 0.0559 (8) 0.0608 (9) 0.0058 (7) 0.0169 (7) 0.0171 (7)

Geometric parameters (Å, º)

O1A—C3A 1.3559 (17) C5B—C6B 1.377 (3)
O1A—H1OA 0.98 (2) C5B—H5B 0.9300
O1B—C3B 1.3520 (18) C6A—C7A 1.376 (2)
O1B—H1OB 0.90 (2) C6A—H6A 0.9300
N1A—C1A 1.2865 (17) C6B—C7B 1.382 (2)
N1A—N2A 1.3597 (16) C6B—H6B 0.9300
N1B—C1B 1.2801 (18) C7A—H7A 0.9300
N1B—N2B 1.3674 (16) C7B—H7B 0.9300
N2A—C8A 1.3734 (18) C8A—C13A 1.3943 (19)
N2A—H1NA 0.914 (18) C8A—C9A 1.399 (2)
N2B—C8B 1.3709 (18) C8B—C13B 1.397 (2)
N2B—H1NB 0.894 (18) C8B—C9B 1.4008 (19)
N3A—C14A 1.140 (2) C9A—C10A 1.379 (2)
N3B—C14B 1.142 (2) C9A—H9A 0.9300
C1A—C2A 1.4453 (19) C9B—C10B 1.374 (2)
C1A—H1A 0.9300 C9B—H9B 0.9300
C1B—C2B 1.4517 (19) C10A—C11A 1.387 (2)
C1B—H1B 0.9300 C10A—H10A 0.9300
C2A—C7A 1.3951 (19) C10B—C11B 1.393 (2)
C2A—C3A 1.402 (2) C10B—H10B 0.9300
C2B—C7B 1.3925 (19) C11A—C12A 1.395 (2)
C2B—C3B 1.4017 (19) C11A—C14A 1.439 (2)
C3A—C4A 1.383 (2) C11B—C12B 1.394 (2)
C3B—C4B 1.391 (2) C11B—C14B 1.432 (2)
C4A—C5A 1.373 (2) C12A—C13A 1.370 (2)
C4A—H4A 0.9300 C12A—H12A 0.9300
C4B—C5B 1.367 (3) C12B—C13B 1.363 (2)
C4B—H4B 0.9300 C12B—H12B 0.9300
C5A—C6A 1.378 (3) C13A—H13A 0.9300
C5A—H5A 0.9300 C13B—H13B 0.9300
C3A—O1A—H1OA 106.5 (13) C7B—C6B—H6B 120.4
C3B—O1B—H1OB 108.4 (13) C6A—C7A—C2A 121.60 (15)
C1A—N1A—N2A 116.26 (12) C6A—C7A—H7A 119.2
C1B—N1B—N2B 117.48 (12) C2A—C7A—H7A 119.2
N1A—N2A—C8A 121.92 (12) C6B—C7B—C2B 121.27 (15)
N1A—N2A—H1NA 119.3 (11) C6B—C7B—H7B 119.4
C8A—N2A—H1NA 118.6 (11) C2B—C7B—H7B 119.4
N1B—N2B—C8B 120.79 (12) N2A—C8A—C13A 117.82 (13)
N1B—N2B—H1NB 117.9 (11) N2A—C8A—C9A 123.00 (13)
C8B—N2B—H1NB 120.8 (11) C13A—C8A—C9A 119.18 (13)
N1A—C1A—C2A 122.47 (13) N2B—C8B—C13B 118.37 (13)
N1A—C1A—H1A 118.8 N2B—C8B—C9B 122.92 (13)
C2A—C1A—H1A 118.8 C13B—C8B—C9B 118.71 (13)
N1B—C1B—C2B 122.14 (12) C10A—C9A—C8A 119.59 (14)
N1B—C1B—H1B 118.9 C10A—C9A—H9A 120.2
C2B—C1B—H1B 118.9 C8A—C9A—H9A 120.2
C7A—C2A—C3A 117.93 (13) C10B—C9B—C8B 119.81 (13)
C7A—C2A—C1A 119.35 (13) C10B—C9B—H9B 120.1
C3A—C2A—C1A 122.70 (13) C8B—C9B—H9B 120.1
C7B—C2B—C3B 118.45 (13) C9A—C10A—C11A 121.09 (14)
C7B—C2B—C1B 119.12 (13) C9A—C10A—H10A 119.5
C3B—C2B—C1B 122.43 (13) C11A—C10A—H10A 119.5
O1A—C3A—C4A 118.18 (14) C9B—C10B—C11B 121.24 (13)
O1A—C3A—C2A 121.55 (13) C9B—C10B—H10B 119.4
C4A—C3A—C2A 120.27 (14) C11B—C10B—H10B 119.4
O1B—C3B—C4B 118.20 (14) C10A—C11A—C12A 119.13 (13)
O1B—C3B—C2B 122.02 (13) C10A—C11A—C14A 121.12 (14)
C4B—C3B—C2B 119.78 (15) C12A—C11A—C14A 119.75 (14)
C5A—C4A—C3A 120.18 (16) C10B—C11B—C12B 118.66 (14)
C5A—C4A—H4A 119.9 C10B—C11B—C14B 121.05 (14)
C3A—C4A—H4A 119.9 C12B—C11B—C14B 120.26 (14)
C5B—C4B—C3B 120.29 (16) C13A—C12A—C11A 120.19 (14)
C5B—C4B—H4B 119.9 C13A—C12A—H12A 119.9
C3B—C4B—H4B 119.9 C11A—C12A—H12A 119.9
C4A—C5A—C6A 120.81 (15) C13B—C12B—C11B 120.49 (14)
C4A—C5A—H5A 119.6 C13B—C12B—H12B 119.8
C6A—C5A—H5A 119.6 C11B—C12B—H12B 119.8
C4B—C5B—C6B 121.02 (15) C12A—C13A—C8A 120.82 (14)
C4B—C5B—H5B 119.5 C12A—C13A—H13A 119.6
C6B—C5B—H5B 119.5 C8A—C13A—H13A 119.6
C7A—C6A—C5A 119.21 (15) C12B—C13B—C8B 121.09 (14)
C7A—C6A—H6A 120.4 C12B—C13B—H13B 119.5
C5A—C6A—H6A 120.4 C8B—C13B—H13B 119.5
C5B—C6B—C7B 119.19 (16) N3A—C14A—C11A 179.3 (2)
C5B—C6B—H6B 120.4 N3B—C14B—C11B 179.48 (19)
C13A—C8A—N2A—N1A 175.98 (13) C13B—C8B—N2B—N1B 172.55 (13)
C8A—N2A—N1A—C1A 179.44 (14) C8B—N2B—N1B—C1B 175.41 (13)
N2A—N1A—C1A—C2A −179.93 (13) N2B—N1B—C1B—C2B 177.44 (12)
N1A—C1A—C2A—C3A 0.2 (2) N1B—C1B—C2B—C3B −1.4 (2)
C1A—C2A—C3A—O1A −1.3 (2) C1B—C2B—C3B—O1B 0.2 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1A—H1OA···N1A 0.98 (2) 1.77 (2) 2.654 (2) 149 (2)
O1B—H1OB···N1B 0.90 (2) 1.86 (2) 2.653 (2) 147 (2)
N2A—H1NA···N3Bi 0.91 (2) 2.17 (2) 3.065 (2) 166 (2)
N2B—H1NB···N3Aii 0.89 (2) 2.25 (2) 3.098 (2) 158 (2)
C7A—H7A···O1Biii 0.93 2.55 3.427 (2) 156
C7B—H7B···O1Aiv 0.93 2.49 3.413 (2) 172

Symmetry codes: (i) −x, −y, −z; (ii) −x+1, −y+1, −z; (iii) −x+1, −y, −z+1; (iv) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2800).

References

  1. Archibald, S. J., Blake, A. J., Schroder, M. & Winpenny, R. E. P. (1994). Chem. Commun. pp. 1669–1670.
  2. Dao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805–813. [DOI] [PubMed]
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  5. Harada, J., Uekusa, H. & Ohashi, Y. (1999). J. Am. Chem. Soc. 121, 5809–5810.
  6. Kargar, H., Jamshidvand, A., Fun, H.-K. & Kia, R. (2009). Acta Cryst. E65, m403–m404. [DOI] [PMC free article] [PubMed]
  7. Lozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955–962. [DOI] [PMC free article] [PubMed]
  8. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  9. Mohamed, S. K., Abdelhamid, A. A., Akkurt, M., Fanwick, P. E. & Maharramov, A. M. (2012). Acta Cryst. E68, o1618. [DOI] [PMC free article] [PubMed]
  10. Mohamed, S. K., Akkurt, M., Tahir, M. N. & Abdelhamid, A. A. (2012). Acta Cryst. E68, o1905. [DOI] [PMC free article] [PubMed]
  11. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  12. Ogawa, K., Kasahara, Y., Ohtani, Y. & Harada, J. (1998). J. Am. Chem. Soc. 120, 7107–7108.
  13. Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Yeap, C. S., Kia, R., Kargar, H. & Fun, H.-K. (2009). Acta Cryst. E65, m570–m571. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812037841/rz2800sup1.cif

e-68-o2886-sup1.cif (28.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812037841/rz2800Isup2.hkl

e-68-o2886-Isup2.hkl (220.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812037841/rz2800Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES