Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Sep 8;68(Pt 10):o2889. doi: 10.1107/S1600536812037774

2,4,6-Trimethyl-N-[1-(1H-pyrrol-2-yl)ethyl­idene]aniline

Bi-yun Su a,*, Lei Li a, Jia-Xiang Wang a, Xuan-Yan Li a
PMCID: PMC3470241  PMID: 23125685

Abstract

There are two independent mol­ecules in the asymmetric unit of the title compound, C15H18N2, each of which features a syn disposition of the N atoms. In each mol­ecule, the pyrrole and benzene rings are essentially perpendicular, with dihedral angles of 78.90 (9) and 79.96 (9)°. In the crystal, the independent mol­ecules are connected by a pair of pyrrole–imino N—H⋯N hydrogen bonds, forming a two-mol­ecule aggregate.

Related literature  

For general background to the imino­pyrrole unit, see: Small et al. (1998); Su et al. (2009a ,b ); Britovsek et al. (2003); Dawson et al. (2000). For the pyrrole diimine unit, see: Matsuo et al. (2001) and for the pyrrole monoimine unit, see: He et al. (2009).graphic file with name e-68-o2889-scheme1.jpg

Experimental  

Crystal data  

  • C15H18N2

  • M r = 226.31

  • Monoclinic, Inline graphic

  • a = 29.848 (4) Å

  • b = 7.9668 (11) Å

  • c = 26.325 (4) Å

  • β = 119.940 (2)°

  • V = 5424.6 (13) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.37 × 0.24 × 0.18 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.976, T max = 0.988

  • 14702 measured reflections

  • 5675 independent reflections

  • 2837 reflections with I > 2σ(I)

  • R int = 0.054

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.159

  • S = 0.99

  • 5675 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812037774/tk5142sup1.cif

e-68-o2889-sup1.cif (24.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812037774/tk5142Isup2.hkl

e-68-o2889-Isup2.hkl (277.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812037774/tk5142Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N4 0.86 2.23 3.029 (3) 154
N3—H3⋯N2 0.86 2.28 3.060 (3) 151

Acknowledgments

This work was supported by the Natural Science Basic Research Plan in Shaanxi Province (No. 2009JQ2006), the Scientific Research Plan Project of Shaanxi Education Department (12 J K0620) and the Important Science & Technology Specific Projects of Innovative Program of Shaanxi Province (No. 2010ZDKG-46).

supplementary crystallographic information

Comment

Recently, bis(imino)pyridine incorporated late transition metal catalysts have attracted much attention for their antioxidant properties and outstanding activities for olefin polymerization (Small et al., 1998; Su et al., 2009a,b). As a five-membered analogue of the pyridine ring (Matsuo et al., 2001; He et al., 2009), pyrrole has been frequently introduced into the skeleton of bis(imino)pyridine ligands to design new ligands and corresponding metal complexes (Britovsek et al., 2003; Dawson et al., 2000). Bis(imino)pyrrole is usually prepared from Schiff base condensation of 2,5-diacetylpyrrole and an aromatic amine (Matsuo et al., 2001). As a contribution to this research field, we present herein the synthesis of mono(imino)pyrrole from 2-acetyl pyrrole and 2,4,6-trimethylaniline, as well as the crystal structure of the title compound 2,4,6-trimethyl-N-[1-(1H-pyrrol-2-yl)ethylidene]aniline.

The asymmetric unit of the title compound (Fig. 1) comprises of two crystallographically independent molecules A and B. These two molecules are connected by a pair of nearly equal N(pyrrole)—H···N(imino) hydrogen bonds, Table 1. In each molecule the pyrrole ring and benzene ring are essentially perpendicular, with dihedral angles of 78.90 (9)° and 79.96 (9)°, respectively. The pyrrole rings of the molecules A and B present a nearly parallel spatial arrangement with a dihedral angle of 34.70 (11)°, and the benzene rings of the two molecules show a dihedral angle of 29.35 (13)°. Although the two molecules in the asymmetric unit are similar some minor differences in corresponding bond angles are evident, most notably C—N(imino)—C of 118.86 (19) and 120.2 (2)°, for A and B, respectively.

The crystal packing is stabilized by N—H···N hydrogen bonds (Table 1, Fig. 2) occurring between the independent molecules comprising the asymmetric unit.

Experimental

The reagents 2-acetyl pyrrole (0.1968 g, 1.80 mmol) and 2,4,6-trimethylaniline (0.2638 g, 1.80 mmol) were placed in a 50 ml flask. After a few drops of acetic acid were added, the mixture was subjected to radiation in a 800 W microwave oven for 3 min and 2 min on a medium–heat setting. The reaction was monitored by TLC, and the crude product was purified by silica gel column chromatography (eluant: petroleum ether/ethyl acetate, 5:1 v/v). The colourless crystals of the title compound were obtained by recrystallization from ethanol (yield 0.085 g, 20.9%). M.pt: 401.4–407.6 K. IR (KBr): νCN 1646 cm-1. 1H NMR (400 MHz, CDCl3): δ 7.16 (s, 2H, phenyl-H), 6.84 (t, 1H, pyrrole-H), 6.63 (t, 1H, pyrrole-H), 6.19 (d, 1H, pyrrole-H), 2.23 (s, 3H, –N=C(CH3)), 1.94 (d, 9H, phenyl-CH3). MS (EI): m/z 225 (M). Anal. Calcd for C15H18N2: C, 79.61; H, 8.02; N, 12.38. Found: C, 79.71; H, 7.362; N, 12.39.

Refinement

All H atoms were placed at calculated positions and refined as riding, with C—H = 0.93–0.96 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(C) for methyl H atoms. In the crystal structure, there is an 33 Å3 void, but the low electron density (0.18 e Å-3) in the difference Fourier map suggests no solvent molecule occupying this void.

Figures

Fig. 1.

Fig. 1.

Two independent molecules in the asymmetric unit of the title compound showing the atomic numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are presented as a small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C15H18N2 Z = 16
Mr = 226.31 F(000) = 1952
Monoclinic, C2/c Dx = 1.108 Mg m3
Hall symbol: -C 2yc Mo Kα radiation, λ = 0.71073 Å
a = 29.848 (4) Å θ = 2.7–26.8°
b = 7.9668 (11) Å µ = 0.07 mm1
c = 26.325 (4) Å T = 296 K
β = 119.940 (2)° Block, colourless
V = 5424.6 (13) Å3 0.37 × 0.24 × 0.18 mm

Data collection

Bruker APEXII CCD diffractometer 5675 independent reflections
Radiation source: fine-focus sealed tube 2837 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.054
φ and ω scans θmax = 26.8°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −37→37
Tmin = 0.976, Tmax = 0.988 k = −10→9
14702 measured reflections l = −29→33

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057 H-atom parameters constrained
wR(F2) = 0.159 w = 1/[σ2(Fo2) + (0.060P)2 + 0.950P] where P = (Fo2 + 2Fc2)/3
S = 0.99 (Δ/σ)max = 0.028
5675 reflections Δρmax = 0.18 e Å3
316 parameters Δρmin = −0.14 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0019 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.17414 (8) −0.0243 (2) 0.55671 (9) 0.0611 (6)
H1 0.1455 0.0292 0.5365 0.073*
N2 0.14363 (7) 0.1397 (2) 0.62945 (8) 0.0530 (5)
N3 0.03652 (7) 0.2001 (2) 0.52301 (9) 0.0578 (5)
H3 0.0668 0.1573 0.5437 0.069*
N4 0.08934 (7) 0.1824 (2) 0.45990 (8) 0.0541 (5)
C1 0.19777 (11) −0.1177 (3) 0.53393 (13) 0.0735 (8)
H1A 0.1860 −0.1334 0.4942 0.088*
C2 0.24147 (12) −0.1846 (3) 0.57869 (14) 0.0759 (8)
H2 0.2647 −0.2551 0.5754 0.091*
C3 0.24487 (10) −0.1272 (3) 0.63084 (12) 0.0655 (7)
H3A 0.2712 −0.1520 0.6686 0.079*
C4 0.20241 (9) −0.0274 (3) 0.61649 (11) 0.0523 (6)
C5 0.18741 (9) 0.0629 (3) 0.65329 (10) 0.0499 (6)
C6 0.22526 (10) 0.0608 (3) 0.71790 (10) 0.0679 (7)
H6A 0.2153 0.1429 0.7371 0.102*
H6B 0.2592 0.0866 0.7246 0.102*
H6C 0.2255 −0.0485 0.7334 0.102*
C7 0.12933 (8) 0.2298 (3) 0.66607 (9) 0.0461 (6)
C8 0.10410 (9) 0.1483 (3) 0.69156 (10) 0.0538 (6)
C9 0.08898 (9) 0.2413 (3) 0.72524 (10) 0.0576 (7)
H9 0.0721 0.1869 0.7422 0.069*
C10 0.09813 (9) 0.4116 (3) 0.73436 (10) 0.0551 (6)
C11 0.12191 (9) 0.4894 (3) 0.70688 (10) 0.0545 (6)
H11 0.1281 0.6042 0.7122 0.065*
C12 0.13682 (8) 0.4037 (3) 0.67175 (10) 0.0460 (6)
C13 0.09381 (12) −0.0379 (3) 0.68352 (13) 0.0818 (9)
H13A 0.0751 −0.0717 0.7027 0.123*
H13B 0.1261 −0.0973 0.7003 0.123*
H13C 0.0737 −0.0632 0.6425 0.123*
C14 0.08290 (12) 0.5089 (3) 0.77271 (13) 0.0853 (9)
H14A 0.0486 0.4771 0.7635 0.128*
H14B 0.0837 0.6270 0.7658 0.128*
H14C 0.1067 0.4845 0.8132 0.128*
C15 0.16042 (10) 0.4941 (3) 0.64095 (12) 0.0648 (7)
H15A 0.1586 0.6130 0.6456 0.097*
H15B 0.1418 0.4664 0.6000 0.097*
H15C 0.1959 0.4609 0.6575 0.097*
C16 0.00067 (10) 0.2114 (3) 0.53974 (12) 0.0686 (8)
H16 0.0047 0.1752 0.5754 0.082*
C17 −0.04220 (10) 0.2844 (3) 0.49581 (12) 0.0675 (7)
H17 −0.0729 0.3060 0.4956 0.081*
C18 −0.03163 (9) 0.3212 (3) 0.45087 (11) 0.0633 (7)
H18 −0.0539 0.3733 0.4155 0.076*
C19 0.01769 (9) 0.2664 (3) 0.46857 (10) 0.0477 (6)
C20 0.04682 (9) 0.2658 (3) 0.43821 (10) 0.0513 (6)
C21 0.02468 (10) 0.3648 (4) 0.38190 (12) 0.0747 (8)
H21A 0.0480 0.3599 0.3668 0.112*
H21B 0.0200 0.4796 0.3894 0.112*
H21C −0.0081 0.3180 0.3537 0.112*
C22 0.11795 (9) 0.1761 (3) 0.42984 (10) 0.0496 (6)
C23 0.10903 (9) 0.0452 (3) 0.39048 (11) 0.0588 (7)
C24 0.14020 (10) 0.0325 (3) 0.36587 (11) 0.0628 (7)
H24 0.1343 −0.0543 0.3396 0.075*
C25 0.17990 (9) 0.1440 (3) 0.37872 (11) 0.0573 (6)
C26 0.18833 (10) 0.2692 (3) 0.41837 (12) 0.0631 (7)
H26 0.2153 0.3441 0.4281 0.076*
C27 0.15826 (9) 0.2884 (3) 0.44436 (11) 0.0560 (6)
C28 0.06663 (12) −0.0811 (4) 0.37605 (15) 0.0992 (11)
H28A 0.0669 −0.1642 0.3498 0.149*
H28B 0.0338 −0.0249 0.3577 0.149*
H28C 0.0722 −0.1344 0.4114 0.149*
C29 0.21288 (11) 0.1278 (4) 0.35027 (13) 0.0861 (9)
H29A 0.2454 0.1833 0.3740 0.129*
H29B 0.1954 0.1786 0.3121 0.129*
H29C 0.2189 0.0112 0.3466 0.129*
C30 0.16873 (12) 0.4276 (4) 0.48756 (14) 0.0938 (10)
H30A 0.1422 0.5113 0.4698 0.141*
H30B 0.2017 0.4773 0.4989 0.141*
H30C 0.1690 0.3828 0.5216 0.141*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0641 (14) 0.0634 (13) 0.0535 (13) 0.0138 (10) 0.0275 (12) −0.0060 (11)
N2 0.0544 (13) 0.0537 (12) 0.0478 (12) 0.0072 (10) 0.0231 (10) −0.0029 (9)
N3 0.0505 (12) 0.0746 (14) 0.0548 (13) 0.0111 (10) 0.0311 (11) 0.0053 (11)
N4 0.0511 (12) 0.0681 (13) 0.0496 (12) 0.0031 (10) 0.0302 (11) −0.0017 (10)
C1 0.086 (2) 0.0714 (18) 0.0683 (19) 0.0134 (16) 0.0419 (18) −0.0145 (15)
C2 0.080 (2) 0.0676 (18) 0.091 (2) 0.0182 (15) 0.051 (2) −0.0020 (17)
C3 0.0669 (17) 0.0607 (16) 0.0685 (18) 0.0152 (14) 0.0334 (15) 0.0070 (14)
C4 0.0565 (15) 0.0469 (14) 0.0550 (16) 0.0057 (11) 0.0290 (13) 0.0022 (12)
C5 0.0534 (15) 0.0474 (13) 0.0476 (14) 0.0027 (12) 0.0243 (13) 0.0019 (11)
C6 0.0625 (17) 0.0840 (19) 0.0529 (16) 0.0136 (14) 0.0256 (14) 0.0061 (14)
C7 0.0441 (13) 0.0492 (14) 0.0386 (13) 0.0055 (11) 0.0157 (11) −0.0008 (11)
C8 0.0566 (15) 0.0509 (15) 0.0505 (15) −0.0007 (12) 0.0241 (13) 0.0010 (12)
C9 0.0607 (16) 0.0672 (17) 0.0491 (15) 0.0000 (13) 0.0306 (13) 0.0087 (13)
C10 0.0570 (15) 0.0602 (16) 0.0479 (15) 0.0095 (12) 0.0261 (13) −0.0007 (12)
C11 0.0569 (15) 0.0461 (14) 0.0578 (16) 0.0020 (11) 0.0266 (14) −0.0009 (12)
C12 0.0416 (13) 0.0491 (14) 0.0447 (13) 0.0073 (10) 0.0196 (11) 0.0050 (11)
C13 0.102 (2) 0.0559 (17) 0.093 (2) −0.0117 (16) 0.052 (2) −0.0010 (16)
C14 0.106 (2) 0.093 (2) 0.074 (2) 0.0111 (18) 0.058 (2) −0.0090 (17)
C15 0.0612 (16) 0.0644 (17) 0.0787 (19) 0.0026 (13) 0.0422 (16) 0.0043 (14)
C16 0.0639 (18) 0.091 (2) 0.0681 (18) 0.0114 (15) 0.0458 (17) 0.0108 (16)
C17 0.0550 (17) 0.088 (2) 0.0724 (19) 0.0064 (14) 0.0413 (16) −0.0015 (16)
C18 0.0501 (15) 0.0796 (18) 0.0580 (16) 0.0102 (13) 0.0253 (14) 0.0041 (14)
C19 0.0461 (14) 0.0558 (14) 0.0424 (14) −0.0003 (11) 0.0231 (12) −0.0013 (12)
C20 0.0483 (15) 0.0582 (15) 0.0469 (14) −0.0026 (12) 0.0235 (12) −0.0047 (12)
C21 0.0650 (18) 0.096 (2) 0.0638 (18) 0.0155 (15) 0.0324 (15) 0.0206 (16)
C22 0.0490 (14) 0.0601 (15) 0.0439 (13) 0.0045 (12) 0.0263 (12) 0.0000 (12)
C23 0.0562 (15) 0.0745 (17) 0.0548 (15) −0.0115 (13) 0.0345 (14) −0.0128 (14)
C24 0.0662 (17) 0.0772 (18) 0.0537 (16) −0.0068 (14) 0.0364 (15) −0.0142 (14)
C25 0.0545 (16) 0.0723 (17) 0.0547 (16) 0.0036 (13) 0.0344 (14) 0.0014 (14)
C26 0.0566 (16) 0.0676 (17) 0.0726 (18) −0.0109 (13) 0.0378 (15) −0.0057 (15)
C27 0.0519 (15) 0.0628 (16) 0.0556 (15) −0.0032 (12) 0.0284 (13) −0.0073 (13)
C28 0.098 (2) 0.111 (2) 0.117 (3) −0.046 (2) 0.074 (2) −0.049 (2)
C29 0.083 (2) 0.110 (2) 0.093 (2) −0.0015 (18) 0.064 (2) 0.0007 (19)
C30 0.091 (2) 0.093 (2) 0.108 (3) −0.0230 (18) 0.058 (2) −0.042 (2)

Geometric parameters (Å, º)

N1—C1 1.354 (3) C14—H14B 0.9600
N1—C4 1.365 (3) C14—H14C 0.9600
N1—H1 0.8600 C15—H15A 0.9600
N2—C5 1.287 (3) C15—H15B 0.9600
N2—C7 1.427 (3) C15—H15C 0.9600
N3—C16 1.348 (3) C16—C17 1.355 (4)
N3—C19 1.358 (3) C16—H16 0.9300
N3—H3 0.8600 C17—C18 1.399 (3)
N4—C20 1.286 (3) C17—H17 0.9300
N4—C22 1.426 (3) C18—C19 1.375 (3)
C1—C2 1.356 (4) C18—H18 0.9300
C1—H1A 0.9300 C19—C20 1.445 (3)
C2—C3 1.402 (3) C20—C21 1.510 (3)
C2—H2 0.9300 C21—H21A 0.9600
C3—C4 1.380 (3) C21—H21B 0.9600
C3—H3A 0.9300 C21—H21C 0.9600
C4—C5 1.445 (3) C22—C27 1.391 (3)
C5—C6 1.500 (3) C22—C23 1.399 (3)
C6—H6A 0.9600 C23—C24 1.377 (3)
C6—H6B 0.9600 C23—C28 1.509 (3)
C6—H6C 0.9600 C24—C25 1.381 (3)
C7—C8 1.394 (3) C24—H24 0.9300
C7—C12 1.400 (3) C25—C26 1.374 (3)
C8—C9 1.392 (3) C25—C29 1.511 (3)
C8—C13 1.508 (3) C26—C27 1.382 (3)
C9—C10 1.381 (3) C26—H26 0.9300
C9—H9 0.9300 C27—C30 1.505 (3)
C10—C11 1.387 (3) C28—H28A 0.9600
C10—C14 1.512 (3) C28—H28B 0.9600
C11—C12 1.389 (3) C28—H28C 0.9600
C11—H11 0.9300 C29—H29A 0.9600
C12—C15 1.498 (3) C29—H29B 0.9600
C13—H13A 0.9600 C29—H29C 0.9600
C13—H13B 0.9600 C30—H30A 0.9600
C13—H13C 0.9600 C30—H30B 0.9600
C14—H14A 0.9600 C30—H30C 0.9600
C1—N1—C4 110.0 (2) H15A—C15—H15B 109.5
C1—N1—H1 125.0 C12—C15—H15C 109.5
C4—N1—H1 125.0 H15A—C15—H15C 109.5
C5—N2—C7 118.86 (19) H15B—C15—H15C 109.5
C16—N3—C19 109.9 (2) N3—C16—C17 108.4 (2)
C16—N3—H3 125.0 N3—C16—H16 125.8
C19—N3—H3 125.0 C17—C16—H16 125.8
C20—N4—C22 120.2 (2) C16—C17—C18 107.2 (2)
N1—C1—C2 108.6 (2) C16—C17—H17 126.4
N1—C1—H1A 125.7 C18—C17—H17 126.4
C2—C1—H1A 125.7 C19—C18—C17 107.6 (2)
C1—C2—C3 106.9 (2) C19—C18—H18 126.2
C1—C2—H2 126.5 C17—C18—H18 126.2
C3—C2—H2 126.5 N3—C19—C18 106.88 (19)
C4—C3—C2 108.2 (3) N3—C19—C20 122.4 (2)
C4—C3—H3A 125.9 C18—C19—C20 130.7 (2)
C2—C3—H3A 125.9 N4—C20—C19 119.3 (2)
N1—C4—C3 106.3 (2) N4—C20—C21 123.9 (2)
N1—C4—C5 122.9 (2) C19—C20—C21 116.9 (2)
C3—C4—C5 130.7 (2) C20—C21—H21A 109.5
N2—C5—C4 119.2 (2) C20—C21—H21B 109.5
N2—C5—C6 124.4 (2) H21A—C21—H21B 109.5
C4—C5—C6 116.4 (2) C20—C21—H21C 109.5
C5—C6—H6A 109.5 H21A—C21—H21C 109.5
C5—C6—H6B 109.5 H21B—C21—H21C 109.5
H6A—C6—H6B 109.5 C27—C22—C23 120.1 (2)
C5—C6—H6C 109.5 C27—C22—N4 120.0 (2)
H6A—C6—H6C 109.5 C23—C22—N4 119.5 (2)
H6B—C6—H6C 109.5 C24—C23—C22 118.7 (2)
C8—C7—C12 120.3 (2) C24—C23—C28 120.7 (2)
C8—C7—N2 120.5 (2) C22—C23—C28 120.6 (2)
C12—C7—N2 119.0 (2) C23—C24—C25 122.4 (2)
C9—C8—C7 118.9 (2) C23—C24—H24 118.8
C9—C8—C13 120.3 (2) C25—C24—H24 118.8
C7—C8—C13 120.8 (2) C26—C25—C24 117.5 (2)
C10—C9—C8 122.3 (2) C26—C25—C29 121.4 (2)
C10—C9—H9 118.8 C24—C25—C29 121.0 (2)
C8—C9—H9 118.8 C25—C26—C27 122.6 (2)
C9—C10—C11 117.2 (2) C25—C26—H26 118.7
C9—C10—C14 121.4 (2) C27—C26—H26 118.7
C11—C10—C14 121.4 (2) C26—C27—C22 118.6 (2)
C12—C11—C10 123.0 (2) C26—C27—C30 120.9 (2)
C12—C11—H11 118.5 C22—C27—C30 120.4 (2)
C10—C11—H11 118.5 C23—C28—H28A 109.5
C11—C12—C7 118.1 (2) C23—C28—H28B 109.5
C11—C12—C15 121.2 (2) H28A—C28—H28B 109.5
C7—C12—C15 120.8 (2) C23—C28—H28C 109.5
C8—C13—H13A 109.5 H28A—C28—H28C 109.5
C8—C13—H13B 109.5 H28B—C28—H28C 109.5
H13A—C13—H13B 109.5 C25—C29—H29A 109.5
C8—C13—H13C 109.5 C25—C29—H29B 109.5
H13A—C13—H13C 109.5 H29A—C29—H29B 109.5
H13B—C13—H13C 109.5 C25—C29—H29C 109.5
C10—C14—H14A 109.5 H29A—C29—H29C 109.5
C10—C14—H14B 109.5 H29B—C29—H29C 109.5
H14A—C14—H14B 109.5 C27—C30—H30A 109.5
C10—C14—H14C 109.5 C27—C30—H30B 109.5
H14A—C14—H14C 109.5 H30A—C30—H30B 109.5
H14B—C14—H14C 109.5 C27—C30—H30C 109.5
C12—C15—H15A 109.5 H30A—C30—H30C 109.5
C12—C15—H15B 109.5 H30B—C30—H30C 109.5
C4—N1—C1—C2 0.7 (3) C19—N3—C16—C17 0.5 (3)
N1—C1—C2—C3 −0.9 (3) N3—C16—C17—C18 −0.9 (3)
C1—C2—C3—C4 0.7 (3) C16—C17—C18—C19 1.0 (3)
C1—N1—C4—C3 −0.3 (3) C16—N3—C19—C18 0.1 (3)
C1—N1—C4—C5 179.1 (2) C16—N3—C19—C20 −177.5 (2)
C2—C3—C4—N1 −0.3 (3) C17—C18—C19—N3 −0.7 (3)
C2—C3—C4—C5 −179.6 (2) C17—C18—C19—C20 176.7 (2)
C7—N2—C5—C4 −179.47 (19) C22—N4—C20—C19 178.2 (2)
C7—N2—C5—C6 0.0 (3) C22—N4—C20—C21 −1.6 (4)
N1—C4—C5—N2 5.5 (3) N3—C19—C20—N4 8.6 (4)
C3—C4—C5—N2 −175.4 (2) C18—C19—C20—N4 −168.4 (2)
N1—C4—C5—C6 −174.0 (2) N3—C19—C20—C21 −171.6 (2)
C3—C4—C5—C6 5.1 (4) C18—C19—C20—C21 11.4 (4)
C5—N2—C7—C8 −87.0 (3) C20—N4—C22—C27 94.9 (3)
C5—N2—C7—C12 98.7 (3) C20—N4—C22—C23 −92.1 (3)
C12—C7—C8—C9 −3.4 (3) C27—C22—C23—C24 −1.2 (4)
N2—C7—C8—C9 −177.6 (2) N4—C22—C23—C24 −174.2 (2)
C12—C7—C8—C13 177.4 (2) C27—C22—C23—C28 177.8 (3)
N2—C7—C8—C13 3.1 (3) N4—C22—C23—C28 4.8 (4)
C7—C8—C9—C10 −0.1 (4) C22—C23—C24—C25 0.1 (4)
C13—C8—C9—C10 179.2 (2) C28—C23—C24—C25 −178.9 (3)
C8—C9—C10—C11 2.0 (4) C23—C24—C25—C26 1.1 (4)
C8—C9—C10—C14 −178.0 (2) C23—C24—C25—C29 −179.1 (2)
C9—C10—C11—C12 −0.5 (3) C24—C25—C26—C27 −1.2 (4)
C14—C10—C11—C12 179.4 (2) C29—C25—C26—C27 179.0 (2)
C10—C11—C12—C7 −2.8 (3) C25—C26—C27—C22 0.2 (4)
C10—C11—C12—C15 177.5 (2) C25—C26—C27—C30 −179.9 (3)
C8—C7—C12—C11 4.7 (3) C23—C22—C27—C26 1.1 (4)
N2—C7—C12—C11 179.01 (19) N4—C22—C27—C26 174.1 (2)
C8—C7—C12—C15 −175.5 (2) C23—C22—C27—C30 −178.8 (3)
N2—C7—C12—C15 −1.2 (3) N4—C22—C27—C30 −5.9 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···N4 0.86 2.23 3.029 (3) 154
N3—H3···N2 0.86 2.28 3.060 (3) 151

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5142).

References

  1. Britovsek, G. J. P., Gibson, V. C., Hoarau, O. D., Spitzmesser, S. K., White, A. J. P. & Williams, D. J. (2003). Inorg. Chem. 42, 3454–3465. [DOI] [PubMed]
  2. Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Dawson, D. M., Walker, D. A., Thornton-Pett, M. & Bochmann, M. (2000). J. Chem. Soc. Dalton Trans. 4, 459–466.
  4. He, L.-P., Liu, J.-Y., Pan, L., Wu, J.-Q., Xu, B.-C. & Li, Y.-S. (2009). J. Polym. Sci. Part A Polym. Chem. 47, 713–721.
  5. Matsuo, Y., Mashima, K. & Tani, K. (2001). Organometallics, 20, 3510–3518.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Small, B. L., Bennett, A. M. A. & Brookhart, M. (1998). J. Am. Chem. Soc. 120, 4049–4050.
  8. Su, B.-Y., Zhao, J.-S., Zhang, Q.-Z. & Qin, W.-L. (2009a). Synth. Commun. 39, 4429–4440.
  9. Su, B.-Y., Zhao, J.-S., Zhang, Q.-Z. & Qin, W.-L. (2009b). Polym. Int. 58, 1051–1057.
  10. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812037774/tk5142sup1.cif

e-68-o2889-sup1.cif (24.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812037774/tk5142Isup2.hkl

e-68-o2889-Isup2.hkl (277.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812037774/tk5142Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES