Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Sep 8;68(Pt 10):o2893. doi: 10.1107/S1600536812037932

5-Iodo-2,7-dimethyl-3-(4-methyl­phenyl­sulfon­yl)-1-benzofuran

Hong Dae Choi a, Pil Ja Seo a, Uk Lee b,*
PMCID: PMC3470245  PMID: 23125689

Abstract

In the title compound, C17H15IO3S, the 4-methyl­phenyl ring makes a dihedral angle of 76.95 (5)° with the mean plane [r.m.s. deviation = 0.019 (2) Å] of the benzofuran fragment. In the crystal, mol­ecules are linked via pairs of C—H⋯O hydrogen bonds, forming inversion dimers. These dimers are connected by slipped π–π inter­actions between the benzene rings of neighbouring mol­ecules [centroid–centroid distance = 3.671 (3) Å and slippage = 1.049 (3) Å].

Related literature  

For background information and the crystal structures of related compounds, see: Choi et al. (2008); Seo et al. (2012).graphic file with name e-68-o2893-scheme1.jpg

Experimental  

Crystal data  

  • C17H15IO3S

  • M r = 426.25

  • Monoclinic, Inline graphic

  • a = 11.5480 (5) Å

  • b = 9.9394 (4) Å

  • c = 14.8911 (6) Å

  • β = 107.611 (1)°

  • V = 1629.10 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.10 mm−1

  • T = 173 K

  • 0.33 × 0.27 × 0.22 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.634, T max = 0.746

  • 16012 measured reflections

  • 4075 independent reflections

  • 3619 reflections with I > 2σ(I)

  • R int = 0.028

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.070

  • S = 1.05

  • 4075 reflections

  • 202 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.91 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812037932/im2395sup1.cif

e-68-o2893-sup1.cif (25.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812037932/im2395Isup2.hkl

e-68-o2893-Isup2.hkl (199.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812037932/im2395Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O3i 0.95 2.58 3.246 (2) 127

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the Blue-Bio Industry Regional Innovation Center (RIC08-06-07) at Dongeui University as an RIC program under the Ministry of Knowledge Economy and Busan City.

supplementary crystallographic information

Comment

As a part of our ongoing study of 5-iodo-2,7-dimethyl-benzofuran derivatives containing either phenyl-sulfonyl (Choi et al., 2008) or 4-fluorophenyl-sulfonyl (Seo et al., 2012) substituents in 3-position, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.019 (2) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle between the 4-methylphenyl ring and the mean plane of the benzofuran fragment is 76.95 (5)°. In the crystal structure, molecules are linked via pairs of C—H···O hydrogen bonds (Fig. 2 & Table 1), forming inversion dimers. These dimers are connected by slipped π–π interactions between the benzene rings of neighbouring molecules, with a Cg···Cgii distance of 3.671 (3) Å and an interplanar distance of 3.518 (2) Å resulting in a slippage of 1.049 (3) Å (Fig. 2, Cg is the centroid of the C2–C7 benzene ring).

Experimental

3-Chloroperoxybenzoic acid (77%, 381 mg, 1.7 mmol) was added in small portions to a stirred solution of 5-iodo-2,7-dimethyl-3-(4-methylphenylsulfanyl)-benzofuran (315 mg, 0.8 mmol) in dichloromethane (50 mL) at 273 K. After being stirred at room temperature for 10h, the mixture was washed with saturated sodium bicarbonate solution, the organic layer was separated and dried over magnesium sulfate. After filtration the solution was concentrated at reduced pressure. The residue was purified by column chromatography (benzene ) to afford the title compound as a colorless solid [yield 68%, m.p. 483–484 K; Rf = 0.56 (benzene)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl and 0.98 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms. The positions of methyl hydrogens were optimized rotationally.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A view of the C—H···O and π–π interactions (dotted lines) in the crystal structure of the title compound. H atoms not participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) - x + 1, - y + 1, - z + 1; (ii) - x, - y + 1, - z + 1.]

Crystal data

C17H15IO3S F(000) = 840
Mr = 426.25 Dx = 1.738 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 7311 reflections
a = 11.5480 (5) Å θ = 2.5–28.3°
b = 9.9394 (4) Å µ = 2.10 mm1
c = 14.8911 (6) Å T = 173 K
β = 107.611 (1)° Block, colourless
V = 1629.10 (12) Å3 0.33 × 0.27 × 0.22 mm
Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer 4075 independent reflections
Radiation source: rotating anode 3619 reflections with I > 2σ(I)
Graphite multilayer monochromator Rint = 0.028
Detector resolution: 10.0 pixels mm-1 θmax = 28.4°, θmin = 2.0°
φ and ω scans h = −15→15
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −11→13
Tmin = 0.634, Tmax = 0.746 l = −19→19
16012 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027 Hydrogen site location: difference Fourier map
wR(F2) = 0.070 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0382P)2 + 0.5412P] where P = (Fo2 + 2Fc2)/3
4075 reflections (Δ/σ)max = 0.001
202 parameters Δρmax = 0.49 e Å3
0 restraints Δρmin = −0.91 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I1 0.279119 (14) 0.635214 (15) 0.727688 (10) 0.03911 (7)
S1 0.28800 (5) 0.38147 (4) 0.33837 (3) 0.02292 (10)
O1 0.02336 (13) 0.22668 (14) 0.42013 (11) 0.0294 (3)
O2 0.23919 (16) 0.36296 (14) 0.23798 (11) 0.0318 (3)
O3 0.32866 (14) 0.51329 (13) 0.37468 (10) 0.0294 (3)
C1 0.17945 (18) 0.33310 (19) 0.39126 (14) 0.0235 (4)
C2 0.17346 (18) 0.37898 (17) 0.48211 (14) 0.0230 (4)
C3 0.23659 (18) 0.47147 (19) 0.54969 (14) 0.0258 (4)
H3 0.3051 0.5191 0.5435 0.031*
C4 0.1941 (2) 0.4900 (2) 0.62619 (14) 0.0278 (4)
C5 0.0950 (2) 0.4200 (2) 0.63774 (15) 0.0303 (4)
H5 0.0701 0.4369 0.6920 0.036*
C6 0.03155 (19) 0.3262 (2) 0.57189 (15) 0.0290 (4)
C7 0.07526 (18) 0.31046 (19) 0.49528 (14) 0.0253 (4)
C8 0.08764 (19) 0.2427 (2) 0.35754 (15) 0.0277 (4)
C9 −0.0757 (2) 0.2491 (3) 0.58031 (19) 0.0416 (5)
H9A −0.1400 0.2503 0.5197 0.062*
H9B −0.1058 0.2906 0.6286 0.062*
H9C −0.0518 0.1560 0.5981 0.062*
C10 0.0456 (2) 0.1610 (2) 0.27101 (18) 0.0397 (5)
H10A 0.0914 0.1860 0.2278 0.059*
H10B −0.0412 0.1772 0.2406 0.059*
H10C 0.0587 0.0654 0.2872 0.059*
C11 0.40852 (17) 0.26776 (18) 0.38089 (13) 0.0222 (4)
C12 0.4107 (2) 0.15132 (19) 0.32984 (14) 0.0260 (4)
H12 0.3491 0.1343 0.2722 0.031*
C13 0.5049 (2) 0.0601 (2) 0.36479 (15) 0.0288 (4)
H13 0.5070 −0.0200 0.3305 0.035*
C14 0.59577 (19) 0.0837 (2) 0.44849 (15) 0.0277 (4)
C15 0.59026 (19) 0.2003 (2) 0.49941 (15) 0.0279 (4)
H15 0.6511 0.2167 0.5576 0.033*
C16 0.49679 (19) 0.2923 (2) 0.46593 (14) 0.0257 (4)
H16 0.4933 0.3712 0.5009 0.031*
C17 0.6981 (2) −0.0151 (2) 0.48381 (19) 0.0383 (5)
H17A 0.6676 −0.1066 0.4671 0.057*
H17B 0.7315 −0.0075 0.5524 0.057*
H17C 0.7620 0.0044 0.4549 0.057*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.03727 (11) 0.04423 (10) 0.03268 (10) −0.00198 (6) 0.00588 (7) −0.01371 (6)
S1 0.0247 (2) 0.0226 (2) 0.0205 (2) −0.00060 (17) 0.00545 (19) 0.00125 (16)
O1 0.0244 (7) 0.0299 (7) 0.0336 (8) −0.0057 (6) 0.0082 (6) −0.0044 (6)
O2 0.0369 (9) 0.0364 (8) 0.0192 (7) 0.0038 (6) 0.0040 (7) 0.0024 (5)
O3 0.0339 (8) 0.0217 (6) 0.0328 (8) −0.0032 (6) 0.0106 (7) 0.0010 (5)
C1 0.0213 (9) 0.0236 (8) 0.0248 (9) 0.0005 (7) 0.0058 (8) 0.0001 (7)
C2 0.0209 (9) 0.0219 (8) 0.0249 (9) 0.0031 (7) 0.0052 (8) 0.0016 (7)
C3 0.0222 (10) 0.0263 (9) 0.0278 (10) −0.0010 (7) 0.0058 (8) 0.0002 (7)
C4 0.0268 (10) 0.0294 (9) 0.0238 (10) 0.0019 (8) 0.0027 (8) −0.0011 (7)
C5 0.0296 (11) 0.0363 (10) 0.0268 (10) 0.0041 (9) 0.0113 (9) 0.0037 (8)
C6 0.0239 (10) 0.0313 (10) 0.0319 (11) 0.0017 (8) 0.0087 (9) 0.0058 (8)
C7 0.0220 (10) 0.0230 (9) 0.0290 (10) 0.0001 (7) 0.0047 (8) 0.0004 (7)
C8 0.0242 (10) 0.0264 (9) 0.0315 (11) 0.0000 (8) 0.0068 (8) −0.0023 (8)
C9 0.0330 (13) 0.0508 (14) 0.0434 (13) −0.0100 (10) 0.0153 (11) 0.0022 (11)
C10 0.0372 (13) 0.0400 (12) 0.0421 (13) −0.0113 (10) 0.0124 (11) −0.0185 (10)
C11 0.0215 (9) 0.0230 (8) 0.0221 (9) −0.0015 (7) 0.0063 (7) 0.0015 (7)
C12 0.0273 (10) 0.0271 (9) 0.0226 (9) −0.0037 (8) 0.0062 (8) −0.0027 (7)
C13 0.0328 (11) 0.0248 (9) 0.0314 (10) −0.0008 (8) 0.0137 (9) −0.0004 (7)
C14 0.0249 (10) 0.0277 (9) 0.0332 (11) −0.0017 (8) 0.0127 (9) 0.0070 (8)
C15 0.0222 (10) 0.0345 (10) 0.0250 (10) −0.0055 (8) 0.0041 (8) 0.0020 (8)
C16 0.0262 (10) 0.0267 (9) 0.0246 (9) −0.0042 (8) 0.0082 (8) −0.0023 (7)
C17 0.0308 (12) 0.0344 (11) 0.0489 (14) 0.0051 (9) 0.0108 (11) 0.0111 (10)

Geometric parameters (Å, º)

I1—C4 2.106 (2) C9—H9B 0.9800
S1—O3 1.4408 (14) C9—H9C 0.9800
S1—O2 1.4410 (16) C10—H10A 0.9800
S1—C1 1.738 (2) C10—H10B 0.9800
S1—C11 1.7556 (19) C10—H10C 0.9800
O1—C8 1.365 (2) C11—C16 1.386 (3)
O1—C7 1.378 (2) C11—C12 1.389 (3)
C1—C8 1.364 (3) C12—C13 1.390 (3)
C1—C2 1.449 (3) C12—H12 0.9500
C2—C7 1.387 (3) C13—C14 1.385 (3)
C2—C3 1.395 (3) C13—H13 0.9500
C3—C4 1.382 (3) C14—C15 1.396 (3)
C3—H3 0.9500 C14—C17 1.504 (3)
C4—C5 1.394 (3) C15—C16 1.387 (3)
C5—C6 1.391 (3) C15—H15 0.9500
C5—H5 0.9500 C16—H16 0.9500
C6—C7 1.389 (3) C17—H17A 0.9800
C6—C9 1.494 (3) C17—H17B 0.9800
C8—C10 1.476 (3) C17—H17C 0.9800
C9—H9A 0.9800
O3—S1—O2 119.09 (9) C6—C9—H9C 109.5
O3—S1—C1 106.23 (9) H9A—C9—H9C 109.5
O2—S1—C1 108.99 (10) H9B—C9—H9C 109.5
O3—S1—C11 108.50 (9) C8—C10—H10A 109.5
O2—S1—C11 108.09 (9) C8—C10—H10B 109.5
C1—S1—C11 105.09 (9) H10A—C10—H10B 109.5
C8—O1—C7 106.93 (15) C8—C10—H10C 109.5
C8—C1—C2 107.44 (17) H10A—C10—H10C 109.5
C8—C1—S1 127.02 (16) H10B—C10—H10C 109.5
C2—C1—S1 125.50 (15) C16—C11—C12 121.08 (18)
C7—C2—C3 119.54 (18) C16—C11—S1 120.01 (15)
C7—C2—C1 104.45 (17) C12—C11—S1 118.86 (15)
C3—C2—C1 135.97 (18) C11—C12—C13 118.69 (19)
C4—C3—C2 116.36 (18) C11—C12—H12 120.7
C4—C3—H3 121.8 C13—C12—H12 120.7
C2—C3—H3 121.8 C14—C13—C12 121.37 (19)
C3—C4—C5 123.01 (19) C14—C13—H13 119.3
C3—C4—I1 118.57 (15) C12—C13—H13 119.3
C5—C4—I1 118.38 (15) C13—C14—C15 118.84 (19)
C6—C5—C4 121.65 (19) C13—C14—C17 120.4 (2)
C6—C5—H5 119.2 C15—C14—C17 120.8 (2)
C4—C5—H5 119.2 C16—C15—C14 120.7 (2)
C7—C6—C5 114.20 (19) C16—C15—H15 119.7
C7—C6—C9 121.9 (2) C14—C15—H15 119.7
C5—C6—C9 123.9 (2) C11—C16—C15 119.33 (19)
O1—C7—C2 110.81 (17) C11—C16—H16 120.3
O1—C7—C6 123.92 (18) C15—C16—H16 120.3
C2—C7—C6 125.24 (19) C14—C17—H17A 109.5
C1—C8—O1 110.37 (18) C14—C17—H17B 109.5
C1—C8—C10 134.2 (2) H17A—C17—H17B 109.5
O1—C8—C10 115.38 (18) C14—C17—H17C 109.5
C6—C9—H9A 109.5 H17A—C17—H17C 109.5
C6—C9—H9B 109.5 H17B—C17—H17C 109.5
H9A—C9—H9B 109.5
O3—S1—C1—C8 155.49 (18) C9—C6—C7—O1 1.6 (3)
O2—S1—C1—C8 26.0 (2) C5—C6—C7—C2 0.3 (3)
C11—S1—C1—C8 −89.6 (2) C9—C6—C7—C2 179.4 (2)
O3—S1—C1—C2 −26.97 (19) C2—C1—C8—O1 −0.2 (2)
O2—S1—C1—C2 −156.44 (16) S1—C1—C8—O1 177.67 (14)
C11—S1—C1—C2 87.91 (18) C2—C1—C8—C10 −179.7 (2)
C8—C1—C2—C7 −0.2 (2) S1—C1—C8—C10 −1.8 (4)
S1—C1—C2—C7 −178.18 (15) C7—O1—C8—C1 0.6 (2)
C8—C1—C2—C3 −177.5 (2) C7—O1—C8—C10 −179.82 (19)
S1—C1—C2—C3 4.5 (3) O3—S1—C11—C16 27.66 (18)
C7—C2—C3—C4 −1.0 (3) O2—S1—C11—C16 158.10 (15)
C1—C2—C3—C4 176.0 (2) C1—S1—C11—C16 −85.63 (17)
C2—C3—C4—C5 0.9 (3) O3—S1—C11—C12 −154.88 (15)
C2—C3—C4—I1 −176.91 (14) O2—S1—C11—C12 −24.44 (18)
C3—C4—C5—C6 −0.2 (3) C1—S1—C11—C12 91.83 (16)
I1—C4—C5—C6 177.66 (16) C16—C11—C12—C13 −1.2 (3)
C4—C5—C6—C7 −0.4 (3) S1—C11—C12—C13 −178.63 (15)
C4—C5—C6—C9 −179.5 (2) C11—C12—C13—C14 −0.3 (3)
C8—O1—C7—C2 −0.8 (2) C12—C13—C14—C15 1.5 (3)
C8—O1—C7—C6 177.30 (19) C12—C13—C14—C17 −178.7 (2)
C3—C2—C7—O1 178.48 (17) C13—C14—C15—C16 −1.3 (3)
C1—C2—C7—O1 0.6 (2) C17—C14—C15—C16 178.98 (19)
C3—C2—C7—C6 0.4 (3) C12—C11—C16—C15 1.5 (3)
C1—C2—C7—C6 −177.42 (19) S1—C11—C16—C15 178.85 (15)
C5—C6—C7—O1 −177.48 (18) C14—C15—C16—C11 −0.2 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C16—H16···O3i 0.95 2.58 3.246 (2) 127

Symmetry code: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2395).

References

  1. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2009). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst E64, o930. [DOI] [PMC free article] [PubMed]
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Seo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2012). Acta Cryst. E68, o96. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812037932/im2395sup1.cif

e-68-o2893-sup1.cif (25.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812037932/im2395Isup2.hkl

e-68-o2893-Isup2.hkl (199.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812037932/im2395Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES