Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Sep 8;68(Pt 10):o2897–o2898. doi: 10.1107/S1600536812038032

2-(1,3-Dioxoisoindolin-2-yl)acetic acid–N′-[(E)-4-meth­oxy­benzyl­idene]pyridine-4-carbohydrazide (2/1)

Sladjana B Novaković a,*, Goran A Bogdanović a, Shaaban K Mohamed b, Mustafa R Albayati c, Ayad S Hameed d
PMCID: PMC3470249  PMID: 23125693

Abstract

In the crystal structure of the title compound, 2C10H7NO4·C14H13N3O2, the two independent acid mol­ecules are connected through strong O—H⋯N and O—H⋯O hydrogen bonds to the central mol­ecule of the anti­tubercular drug N′-[(E)-4-meth­oxy­benzyl­idene]pyridine-4-carbohydrazide. Two such trimolecular units related by an inversion centre inter­act through a pair of N—H⋯O hydrogen bonds, forming a 3 + 3 mol­ecular aggregate. The dihedral angle between the aromatic rings of the hydrazone mol­ecule is 1.99 (12)°. The crystal packing features weak C—H⋯O and π–π stacking inter­actions, with centroid–centroid distances of 3.8460 (19) and 3.8703 (13) Å.

Related literature  

For anti-tuberculosis drugs containing the isoniazid core structure, see: Bijev (2006); Imramovský et al. (2007); Maccari et al. (2005); Schultheiss & Newman (2009); Shindikar & Viswanathan (2005); Sinha et al. (2005). For crystal structures with N′-[(E)-(4-meth­oxy­phen­yl)methyl­idene]pyridine-4-carbo­hydrazide, see: Jing et al. (2005); Lin & Liu (2007); Shanmuga Sundara Raj et al. (1999); Wardell et al. (2007). For crystal structures with 2-(1,3-dioxoisoindolin-2-yl)acetic acid, see: Barooah et al. (2006); Feeder & Jones (1994, 1996). For a related co-crystal, see: Mohamed et al. (2012). For the synthesis of 2-(1,3-dioxoisoindolin-2-yl)acetic acid, see: Rajpurohit & Sah (2005).graphic file with name e-68-o2897-scheme1.jpg

Experimental  

Crystal data  

  • 2C10H7NO4·C14H13N3O2

  • M r = 665.61

  • Triclinic, Inline graphic

  • a = 8.1238 (4) Å

  • b = 12.7963 (7) Å

  • c = 15.9191 (11) Å

  • α = 105.590 (5)°

  • β = 101.160 (5)°

  • γ = 97.535 (4)°

  • V = 1534.19 (17) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.91 mm−1

  • T = 293 K

  • 0.16 × 0.10 × 0.08 mm

Data collection  

  • Oxford Diffraction Xcalibur (Sapphire3, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) T min = 0.963, T max = 1.000

  • 10334 measured reflections

  • 5912 independent reflections

  • 4836 reflections with I > 2σ(I)

  • R int = 0.022

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.116

  • S = 1.06

  • 5912 reflections

  • 456 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812038032/rz2799sup1.cif

e-68-o2897-sup1.cif (37.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812038032/rz2799Isup2.hkl

e-68-o2897-Isup2.hkl (283.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812038032/rz2799Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2A—H1OA⋯N1 1.00 (3) 1.60 (3) 2.5997 (19) 177 (2)
O2B—H1OB⋯O1 0.93 (2) 1.75 (2) 2.6736 (16) 170 (2)
N2—H1N2⋯O4B i 0.87 (2) 2.22 (2) 3.0549 (18) 161 (2)
C2A—H2A2⋯O3B ii 0.97 2.57 3.477 (2) 156
C5B—H5B⋯O1iii 0.93 2.51 3.158 (2) 126
C7B—H7B⋯O3B iv 0.93 2.55 3.275 (2) 135
C5—H5⋯O3A v 0.93 2.48 3.341 (2) 154

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

The authors are grateful to the Higher Education Authority of Iraq for sponsoring this project. Our gratitude is also extended to the Manchester Metropolitan University for facilitating and supporting this study. SBN and GAB thank the Ministry of Education, Science and Technological Development of the Republic of Serbia for the financial support (projects 172014 and 172035).

supplementary crystallographic information

Comment

Compounds incorporating the isoniazid (INH) core structure have shown high inhibitory activity in vitro (Bijev, 2006; Imramovský et al., 2007) and in mice towards M. tuberculosis H37Rv, ATCC 27294, M. tuberculosis clinical isolates and isoniazid-resistant M. tuberculosis (Maccari et al., 2005; Schultheiss & Newman 2009; Shindikar & Viswanathan, 2005; Sinha et al., 2005). In the present study we report the crystal structure of a novel, tricomponent cocrystal (I) containing the isoniazid-related hydrazone N'-[(E)-(4-methoxyphenyl)methylidene]pyridine-4-carbohydrazide and 2-(1,3-dioxoisoindolin-2-yl)acetic acid in a 1:2 molar ratio.

The asymmetric unit of (I) contains one hydrazone molecule and two crystallographically independent molecules of the acid denoted as A and B in Fig. 1. The A and B molecules tightly connect to the hydrazone via short and directional O2a—H1Oa···N1 and O2b— H1Ob···O1 hydrogen bond, respectively (Table 1). The interactions of A and B molecules significantly differ as their carboxyl acid groups, serving as proton donors, find different acceptors within the hydrazone molecule i.e. pyridinyl N1 and carboxyl O1 (Fig. 1). The interaction O2a—H1Oa···N1 which directly involves the acidic –COOH group and the most basic pyridinyl N1 atom causes the noticeable elongation of O2—H1Oa bond in molecule A (Table 1), yet no proton transfer occurs and all components remain neutral.

Besides the different engagement in the strongest interactions, the important difference between molecules A and B concerns their conformation. Thus the O1 carbonyl atom adopts trans and cis orientation relating to N1 atom in A and B. In addition, the O1—C1—C2—N1 torsion angle is 161.2 (2) and 1.4 (2)°, in molecules A and B respectively. It is worth mentioning that in a previously reported cocrystal (Mohamed et al., 2012) as well as in the crystal structures of 2-(1,3-dioxoisoindolin-2-yl)acetic acid containing one molecule in the asymmetric unit (Feeder & Jones, 1996), two independent molecules (Barooah et al., 2006) or the same molecule as monohydrate (Feeder & Jones, 1994), the value of the corresponding torsion angle O1—C1—C2—N1 is below 15.8° indicating the preferred conformation is similar to that of molecule B.

There are several crystal structures of hydrazone N'-[(E)-(4-methoxyphenyl)methylidene]pyridine-4-carbohydrazide describing this compound as monohydrate crystallizing in two forms, monoclinic (Jing et al., 2005; Shanmuga Sundara Raj et al., 1999; Wardell et al., 2007) and orthorhombic (Lin & Liu, 2007). The present form of the molecule shows no particular difference in bond lengths and angles in comparison to the previous ones.

The above described trimer with strongly intermolecular hydrogen-bonded components (Fig. 1), undergoes further arrangement via much weaker interamolecular interactions. Two such trimolecular units related by an inversion centre interact through a pair of N2—H1N2···O4b hydrogen bonds (Table 1) forming a 3 + 3 molecular aggregate.

Apart from this classical N—H···O hydrogen bond, the arrangement of the molecules in the cocrystal is further based on weak C— H···O (Table 1) and π–π interactions. Figure 2 displays the three-dimensional crystal packing as viewed down the a axis. The molecules of hydrazone are stacked in the ac plane with the perpendicular interplanar distances of 3.44 [for molecule at (-x, -y + 2, -z + 1)] and 3.46 Å [for molecule at (-x + 1, -y + 2, -z + 1)]. On the other hand, the acid molecules arrange along the c axis in an AABBAABB sequence, with the perpendicular distances between the rings ranging from 3.31 to 3.43 Å. Considering only the six membered aromatic rings one can observe only a modest overlap: Cg1···Cg2 (-x, -y + 2, -z + 1) = 3.8460 (10) Å, where Cg1 and Cg2 are the centroids of the N1—C5 and C8—C13 rings, respectively and Cg4···Cg4 (x + 1/2, -y + 1, -z) 3.8703 (13) Å where Cg4 is the centroid of the C4a—C9a ring.

Experimental

The cocrystallized solid (I) was obtained unintentionally from a reaction of 0.01 mol (2.55 g) of N'-[(E)-(4-methoxyphenyl)methylidene]pyridine-4-carbohydrazide with 0.02 mol (4.10 g) of (1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)acetic acid in 50 ml ethanol. The reaction mixture was heated for 6 h at 351 K, then poured on crushed ice (50 g). The resulting solid was filtered off, washed with cold ethanol and recrystallized from ethanol. Yellow crystals suitable for X-ray diffraction analysis were grown up in a diluted ethanolic solution over two days. M.p. 472- 474 K. Crystals of the title compound can also be obtained by a simple crystallization of two components dissolved in ethanol.

2-(1,3-Dioxoisoindolin-2-yl)acetic acid was prepared according to the literature procedure (Rajpurohit & Sah, 2005). N'-[(E)-(4-methoxyphenyl)methylidene]pyridine-4-carbohydrazide was prepared by the reaction of an equimolar solution of isoniazid (0.01 mol; 1.37 g) and p-methoxybenzaldehyde (0.01 mol; 1.21 g) in ethanol. The reaction mixture was heated at 351 K and monitored by TLC until completed after 4 h, then left at fume cupboard where the solvent evaporated. The resulting solid was recrystallized from ethanol in a very good yield (87%); m.p. 435–437 K.

Refinement

H atoms bonded to C atoms were placed at calculated positions, with C—H distances fixed at 0.93 Å for aromatic C(sp2) atoms and at 0.96 and 0.97 Å for methyl and methylene C(sp3) atoms, respectively. The corresponding isotropic displacement parameters of the H atoms were set equal to 1.2Ueq or 1.5Ueq of the parent C(sp2) or C(sp3) atoms, respectively. A rotating model was employed for the methyl group. The H atoms attached to N and O atoms were located in a difference Fourier map and refined isotropically.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at the 35% probability level. Intermolecular hydrogen interactions are shown as dashed bonds.

Fig. 2.

Fig. 2.

Crystal packing of the title compound, showing the stacking arrangement of the components within the unit cell.

Crystal data

2C10H7NO4·C14H13N3O2 Z = 2
Mr = 665.61 F(000) = 692
Triclinic, P1 Dx = 1.441 Mg m3
Hall symbol: -P 1 Cu Kα radiation, λ = 1.54184 Å
a = 8.1238 (4) Å Cell parameters from 3871 reflections
b = 12.7963 (7) Å θ = 3.0–72.3°
c = 15.9191 (11) Å µ = 0.91 mm1
α = 105.590 (5)° T = 293 K
β = 101.160 (5)° Prismatic, yellow
γ = 97.535 (4)° 0.16 × 0.10 × 0.08 mm
V = 1534.19 (17) Å3

Data collection

Oxford Diffraction Xcalibur (Sapphire3, Gemini) diffractometer 5912 independent reflections
Radiation source: Enhance (Cu) X-ray Source 4836 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.022
Detector resolution: 16.3280 pixels mm-1 θmax = 72.5°, θmin = 3.0°
ω scans h = −6→9
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) k = −15→15
Tmin = 0.963, Tmax = 1.000 l = −19→19
10334 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0523P)2 + 0.272P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.001
5912 reflections Δρmax = 0.28 e Å3
456 parameters Δρmin = −0.21 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0024 (3)

Special details

Experimental. Absorption correction: Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. 'CrysAlisPro, (Oxford Diffraction, 2009)'

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.2642 (2) 0.95037 (14) 0.17010 (12) 0.0549 (4)
H1 −0.3093 0.9940 0.1368 0.066*
C2 −0.1425 (2) 1.00139 (13) 0.24952 (11) 0.0493 (4)
H2 −0.1069 1.0778 0.2689 0.059*
C3 −0.07405 (18) 0.93782 (11) 0.30007 (9) 0.0366 (3)
C4 −0.1314 (2) 0.82441 (12) 0.26761 (11) 0.0451 (4)
H4 −0.0881 0.7786 0.2992 0.054*
C5 −0.2535 (2) 0.78039 (13) 0.18774 (11) 0.0508 (4)
H5 −0.2915 0.7041 0.1667 0.061*
C6 0.05450 (18) 0.99688 (11) 0.38761 (9) 0.0367 (3)
C7 0.33689 (19) 0.92085 (12) 0.54388 (10) 0.0401 (3)
H7 0.3112 0.8449 0.5156 0.048*
C8 0.46634 (18) 0.96649 (12) 0.62817 (9) 0.0384 (3)
C9 0.5239 (2) 1.08025 (13) 0.66447 (11) 0.0495 (4)
H9 0.4785 1.1271 0.6346 0.059*
C10 0.6462 (2) 1.12434 (13) 0.74335 (12) 0.0534 (4)
H10 0.6852 1.2005 0.7656 0.064*
C11 0.7124 (2) 1.05611 (13) 0.79041 (10) 0.0440 (3)
C12 0.6576 (2) 0.94290 (13) 0.75570 (11) 0.0479 (4)
H12 0.7014 0.8965 0.7865 0.057*
C13 0.5365 (2) 0.89881 (13) 0.67442 (11) 0.0455 (4)
H13 0.5017 0.8225 0.6505 0.055*
C14 0.8949 (3) 1.04657 (17) 0.92371 (12) 0.0657 (5)
H14A 0.8023 1.0151 0.9443 0.099*
H14B 0.9823 1.0934 0.9744 0.099*
H14C 0.9415 0.9884 0.8901 0.099*
N1 −0.31974 (17) 0.84128 (11) 0.13922 (9) 0.0491 (3)
N2 0.13864 (16) 0.93389 (10) 0.42826 (8) 0.0406 (3)
N3 0.25843 (15) 0.98456 (10) 0.50851 (8) 0.0406 (3)
O1 0.07630 (14) 1.09815 (8) 0.41843 (7) 0.0474 (3)
O2 0.83335 (17) 1.11023 (10) 0.86773 (8) 0.0597 (3)
C1A −0.5342 (2) 0.78299 (14) −0.07334 (12) 0.0535 (4)
C2A −0.6544 (2) 0.71923 (15) −0.16347 (11) 0.0555 (4)
H2A1 −0.6875 0.7711 −0.1952 0.067*
H2A2 −0.5940 0.6709 −0.1989 0.067*
C3A −0.8216 (2) 0.54517 (13) −0.15390 (10) 0.0475 (4)
C4A −0.9875 (2) 0.51700 (15) −0.13116 (11) 0.0511 (4)
C5A −1.0643 (3) 0.42141 (17) −0.11908 (12) 0.0647 (5)
H5A −1.0149 0.3590 −0.1273 0.078*
C6A −1.2187 (3) 0.4222 (2) −0.09410 (14) 0.0840 (7)
H6A −1.2740 0.3594 −0.0848 0.101*
C7A −1.2915 (3) 0.5161 (3) −0.08276 (16) 0.0940 (9)
H7A −1.3951 0.5146 −0.0660 0.113*
C8A −1.2142 (3) 0.6116 (3) −0.09567 (15) 0.0828 (7)
H8A −1.2638 0.6739 −0.0882 0.099*
C9A −1.0608 (2) 0.61061 (17) −0.11997 (11) 0.0585 (5)
C10A −0.9459 (2) 0.69870 (15) −0.13613 (11) 0.0569 (4)
N1A −0.80682 (17) 0.65359 (11) −0.15608 (9) 0.0493 (3)
O1A −0.4285 (3) 0.85939 (17) −0.06654 (12) 0.1289 (9)
O2A −0.55221 (17) 0.74356 (11) −0.00883 (8) 0.0626 (4)
O3A −0.71648 (17) 0.48833 (10) −0.16856 (10) 0.0637 (3)
O4A −0.9621 (2) 0.79203 (12) −0.13410 (10) 0.0829 (5)
C1B 0.40479 (19) 1.30491 (12) 0.57084 (10) 0.0425 (3)
C2B 0.5016 (2) 1.37468 (13) 0.66499 (10) 0.0454 (4)
H2B1 0.4301 1.4222 0.6920 0.054*
H2B2 0.5286 1.3267 0.7015 0.054*
C3B 0.67039 (19) 1.55202 (12) 0.66280 (10) 0.0405 (3)
C4B 0.83781 (19) 1.58248 (12) 0.64317 (10) 0.0395 (3)
C5B 0.9136 (2) 1.67982 (13) 0.63322 (11) 0.0470 (4)
H5B 0.8603 1.7406 0.6396 0.056*
C6B 1.0719 (2) 1.68341 (15) 0.61333 (12) 0.0538 (4)
H6B 1.1261 1.7478 0.6059 0.065*
C7B 1.1523 (2) 1.59280 (16) 0.60421 (11) 0.0544 (4)
H7B 1.2594 1.5979 0.5913 0.065*
C8B 1.0751 (2) 1.49488 (14) 0.61414 (11) 0.0492 (4)
H8B 1.1285 1.4342 0.6082 0.059*
C9B 0.91670 (19) 1.49099 (12) 0.63309 (9) 0.0401 (3)
C10B 0.7997 (2) 1.39932 (12) 0.64460 (10) 0.0422 (3)
N1B 0.65796 (16) 1.44176 (10) 0.66338 (9) 0.0422 (3)
O1B 0.45570 (17) 1.30518 (12) 0.50517 (8) 0.0671 (4)
O2B 0.26246 (15) 1.24440 (9) 0.57228 (8) 0.0516 (3)
O3B 0.56253 (15) 1.60611 (10) 0.67685 (9) 0.0556 (3)
O4B 0.81814 (16) 1.30561 (9) 0.63963 (8) 0.0569 (3)
H1OA −0.464 (3) 0.784 (2) 0.0486 (18) 0.101 (8)*
H1OB 0.210 (3) 1.1927 (18) 0.5169 (16) 0.078 (7)*
H1N2 0.126 (2) 0.8633 (16) 0.4029 (13) 0.056 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0628 (11) 0.0486 (9) 0.0472 (9) 0.0083 (8) −0.0060 (8) 0.0194 (7)
C2 0.0578 (10) 0.0374 (8) 0.0453 (9) 0.0048 (7) −0.0030 (7) 0.0135 (7)
C3 0.0358 (7) 0.0373 (7) 0.0347 (7) 0.0062 (6) 0.0053 (6) 0.0102 (6)
C4 0.0475 (9) 0.0371 (7) 0.0457 (8) 0.0063 (6) −0.0004 (7) 0.0135 (6)
C5 0.0539 (9) 0.0381 (8) 0.0491 (9) 0.0017 (7) −0.0016 (7) 0.0077 (7)
C6 0.0367 (7) 0.0350 (7) 0.0358 (7) 0.0037 (6) 0.0059 (6) 0.0098 (6)
C7 0.0418 (8) 0.0365 (7) 0.0397 (8) 0.0067 (6) 0.0058 (6) 0.0110 (6)
C8 0.0379 (7) 0.0409 (8) 0.0365 (7) 0.0083 (6) 0.0067 (6) 0.0129 (6)
C9 0.0550 (9) 0.0395 (8) 0.0492 (9) 0.0098 (7) −0.0045 (7) 0.0169 (7)
C10 0.0605 (10) 0.0387 (8) 0.0508 (9) 0.0060 (7) −0.0050 (8) 0.0112 (7)
C11 0.0446 (8) 0.0473 (8) 0.0365 (8) 0.0084 (7) 0.0030 (6) 0.0117 (6)
C12 0.0550 (9) 0.0477 (9) 0.0421 (8) 0.0130 (7) 0.0021 (7) 0.0207 (7)
C13 0.0522 (9) 0.0382 (8) 0.0437 (8) 0.0076 (7) 0.0047 (7) 0.0138 (6)
C14 0.0744 (13) 0.0714 (12) 0.0439 (10) 0.0109 (10) −0.0080 (9) 0.0223 (9)
N1 0.0493 (8) 0.0489 (8) 0.0396 (7) 0.0038 (6) −0.0030 (6) 0.0103 (6)
N2 0.0432 (7) 0.0340 (6) 0.0364 (6) 0.0068 (5) −0.0026 (5) 0.0063 (5)
N3 0.0396 (6) 0.0400 (6) 0.0358 (6) 0.0054 (5) −0.0006 (5) 0.0088 (5)
O1 0.0505 (6) 0.0348 (5) 0.0468 (6) 0.0030 (4) −0.0050 (5) 0.0100 (5)
O2 0.0673 (8) 0.0539 (7) 0.0438 (6) 0.0057 (6) −0.0126 (5) 0.0126 (5)
C1A 0.0593 (10) 0.0482 (9) 0.0460 (9) −0.0015 (8) 0.0067 (8) 0.0126 (7)
C2A 0.0667 (11) 0.0522 (9) 0.0428 (9) 0.0047 (8) 0.0062 (8) 0.0147 (7)
C3A 0.0489 (9) 0.0448 (8) 0.0397 (8) 0.0092 (7) −0.0003 (7) 0.0055 (7)
C4A 0.0451 (9) 0.0580 (10) 0.0373 (8) 0.0054 (7) −0.0017 (7) 0.0034 (7)
C5A 0.0617 (11) 0.0676 (12) 0.0490 (10) −0.0037 (9) 0.0045 (8) 0.0058 (9)
C6A 0.0640 (13) 0.1115 (19) 0.0524 (12) −0.0225 (13) 0.0051 (10) 0.0102 (12)
C7A 0.0479 (12) 0.154 (3) 0.0619 (14) 0.0113 (15) 0.0099 (10) 0.0095 (15)
C8A 0.0557 (12) 0.121 (2) 0.0680 (14) 0.0321 (13) 0.0120 (10) 0.0173 (13)
C9A 0.0498 (10) 0.0750 (12) 0.0404 (9) 0.0219 (9) −0.0015 (7) 0.0044 (8)
C10A 0.0659 (11) 0.0573 (10) 0.0384 (8) 0.0239 (9) −0.0017 (8) 0.0038 (7)
N1A 0.0500 (8) 0.0448 (7) 0.0424 (7) 0.0095 (6) −0.0027 (6) 0.0053 (6)
O1A 0.1529 (18) 0.1220 (15) 0.0688 (10) −0.0829 (14) −0.0089 (11) 0.0354 (10)
O2A 0.0641 (8) 0.0649 (8) 0.0428 (7) −0.0146 (6) −0.0080 (6) 0.0175 (6)
O3A 0.0600 (8) 0.0566 (7) 0.0794 (9) 0.0226 (6) 0.0205 (7) 0.0204 (7)
O4A 0.1137 (13) 0.0643 (9) 0.0734 (10) 0.0459 (9) 0.0155 (9) 0.0164 (7)
C1B 0.0432 (8) 0.0369 (7) 0.0429 (8) 0.0079 (6) 0.0024 (6) 0.0103 (6)
C2B 0.0483 (9) 0.0400 (8) 0.0426 (8) 0.0018 (6) 0.0056 (7) 0.0108 (6)
C3B 0.0431 (8) 0.0367 (7) 0.0374 (7) 0.0087 (6) 0.0009 (6) 0.0096 (6)
C4B 0.0410 (8) 0.0365 (7) 0.0358 (7) 0.0082 (6) 0.0000 (6) 0.0085 (6)
C5B 0.0493 (9) 0.0408 (8) 0.0484 (9) 0.0073 (7) 0.0037 (7) 0.0155 (7)
C6B 0.0514 (9) 0.0533 (9) 0.0506 (9) −0.0018 (7) 0.0043 (7) 0.0170 (8)
C7B 0.0390 (8) 0.0720 (11) 0.0448 (9) 0.0057 (8) 0.0031 (7) 0.0130 (8)
C8B 0.0434 (8) 0.0551 (9) 0.0424 (8) 0.0167 (7) 0.0002 (7) 0.0076 (7)
C9B 0.0411 (8) 0.0378 (7) 0.0333 (7) 0.0088 (6) −0.0035 (6) 0.0057 (6)
C10B 0.0465 (8) 0.0359 (7) 0.0356 (7) 0.0095 (6) −0.0036 (6) 0.0056 (6)
N1B 0.0421 (7) 0.0339 (6) 0.0445 (7) 0.0049 (5) 0.0015 (5) 0.0092 (5)
O1B 0.0629 (8) 0.0824 (9) 0.0427 (7) −0.0045 (7) 0.0081 (6) 0.0092 (6)
O2B 0.0517 (7) 0.0436 (6) 0.0470 (6) −0.0037 (5) 0.0027 (5) 0.0058 (5)
O3B 0.0522 (7) 0.0508 (7) 0.0704 (8) 0.0220 (5) 0.0183 (6) 0.0208 (6)
O4B 0.0673 (8) 0.0347 (6) 0.0633 (7) 0.0158 (5) 0.0027 (6) 0.0124 (5)

Geometric parameters (Å, º)

C1—N1 1.332 (2) C3A—N1A 1.387 (2)
C1—C2 1.380 (2) C3A—C4A 1.486 (2)
C1—H1 0.9300 C4A—C5A 1.377 (3)
C2—C3 1.384 (2) C4A—C9A 1.391 (3)
C2—H2 0.9300 C5A—C6A 1.388 (3)
C3—C4 1.384 (2) C5A—H5A 0.9300
C3—C6 1.5058 (19) C6A—C7A 1.392 (4)
C4—C5 1.378 (2) C6A—H6A 0.9300
C4—H4 0.9300 C7A—C8A 1.384 (4)
C5—N1 1.329 (2) C7A—H7A 0.9300
C5—H5 0.9300 C8A—C9A 1.375 (3)
C6—O1 1.2312 (17) C8A—H8A 0.9300
C6—N2 1.3376 (19) C9A—C10A 1.477 (3)
C7—N3 1.2775 (19) C10A—O4A 1.211 (2)
C7—C8 1.456 (2) C10A—N1A 1.386 (2)
C7—H7 0.9300 O2A—H1OA 1.00 (3)
C8—C13 1.388 (2) C1B—O1B 1.197 (2)
C8—C9 1.392 (2) C1B—O2B 1.3123 (19)
C9—C10 1.368 (2) C1B—C2B 1.517 (2)
C9—H9 0.9300 C2B—N1B 1.445 (2)
C10—C11 1.390 (2) C2B—H2B1 0.9700
C10—H10 0.9300 C2B—H2B2 0.9700
C11—O2 1.3619 (18) C3B—O3B 1.2036 (18)
C11—C12 1.381 (2) C3B—N1B 1.4038 (18)
C12—C13 1.389 (2) C3B—C4B 1.480 (2)
C12—H12 0.9300 C4B—C5B 1.378 (2)
C13—H13 0.9300 C4B—C9B 1.394 (2)
C14—O2 1.425 (2) C5B—C6B 1.381 (2)
C14—H14A 0.9600 C5B—H5B 0.9300
C14—H14B 0.9600 C6B—C7B 1.391 (3)
C14—H14C 0.9600 C6B—H6B 0.9300
N2—N3 1.3811 (16) C7B—C8B 1.388 (2)
N2—H1N2 0.87 (2) C7B—H7B 0.9300
C1A—O1A 1.180 (2) C8B—C9B 1.375 (2)
C1A—O2A 1.284 (2) C8B—H8B 0.9300
C1A—C2A 1.516 (2) C9B—C10B 1.484 (2)
C2A—N1A 1.446 (2) C10B—O4B 1.2114 (18)
C2A—H2A1 0.9700 C10B—N1B 1.386 (2)
C2A—H2A2 0.9700 O2B—H1OB 0.93 (2)
C3A—O3A 1.2090 (19)
N1—C1—C2 122.73 (15) C5A—C4A—C9A 122.03 (18)
N1—C1—H1 118.6 C5A—C4A—C3A 130.83 (17)
C2—C1—H1 118.6 C9A—C4A—C3A 107.11 (16)
C1—C2—C3 119.45 (15) C4A—C5A—C6A 117.2 (2)
C1—C2—H2 120.3 C4A—C5A—H5A 121.4
C3—C2—H2 120.3 C6A—C5A—H5A 121.4
C4—C3—C2 117.70 (14) C5A—C6A—C7A 120.7 (2)
C4—C3—C6 124.47 (13) C5A—C6A—H6A 119.7
C2—C3—C6 117.81 (13) C7A—C6A—H6A 119.7
C5—C4—C3 119.02 (14) C8A—C7A—C6A 121.9 (2)
C5—C4—H4 120.5 C8A—C7A—H7A 119.1
C3—C4—H4 120.5 C6A—C7A—H7A 119.1
N1—C5—C4 123.38 (15) C9A—C8A—C7A 117.3 (2)
N1—C5—H5 118.3 C9A—C8A—H8A 121.4
C4—C5—H5 118.3 C7A—C8A—H8A 121.4
O1—C6—N2 123.53 (13) C8A—C9A—C4A 121.0 (2)
O1—C6—C3 119.79 (13) C8A—C9A—C10A 130.3 (2)
N2—C6—C3 116.68 (12) C4A—C9A—C10A 108.63 (16)
N3—C7—C8 120.32 (13) O4A—C10A—N1A 124.2 (2)
N3—C7—H7 119.8 O4A—C10A—C9A 129.96 (19)
C8—C7—H7 119.8 N1A—C10A—C9A 105.85 (15)
C13—C8—C9 118.05 (14) C10A—N1A—C3A 112.07 (15)
C13—C8—C7 121.51 (14) C10A—N1A—C2A 122.47 (15)
C9—C8—C7 120.44 (13) C3A—N1A—C2A 124.74 (14)
C10—C9—C8 121.12 (14) C1A—O2A—H1OA 112.8 (14)
C10—C9—H9 119.4 O1B—C1B—O2B 125.65 (15)
C8—C9—H9 119.4 O1B—C1B—C2B 123.35 (15)
C9—C10—C11 120.42 (15) O2B—C1B—C2B 110.99 (14)
C9—C10—H10 119.8 N1B—C2B—C1B 111.00 (13)
C11—C10—H10 119.8 N1B—C2B—H2B1 109.4
O2—C11—C12 125.81 (14) C1B—C2B—H2B1 109.4
O2—C11—C10 114.62 (14) N1B—C2B—H2B2 109.4
C12—C11—C10 119.54 (14) C1B—C2B—H2B2 109.4
C11—C12—C13 119.55 (14) H2B1—C2B—H2B2 108.0
C11—C12—H12 120.2 O3B—C3B—N1B 124.21 (15)
C13—C12—H12 120.2 O3B—C3B—C4B 130.12 (14)
C8—C13—C12 121.27 (14) N1B—C3B—C4B 105.68 (12)
C8—C13—H13 119.4 C5B—C4B—C9B 121.58 (15)
C12—C13—H13 119.4 C5B—C4B—C3B 130.30 (14)
O2—C14—H14A 109.5 C9B—C4B—C3B 108.11 (13)
O2—C14—H14B 109.5 C4B—C5B—C6B 117.23 (15)
H14A—C14—H14B 109.5 C4B—C5B—H5B 121.4
O2—C14—H14C 109.5 C6B—C5B—H5B 121.4
H14A—C14—H14C 109.5 C5B—C6B—C7B 121.48 (16)
H14B—C14—H14C 109.5 C5B—C6B—H6B 119.3
C5—N1—C1 117.72 (14) C7B—C6B—H6B 119.3
C6—N2—N3 118.70 (12) C8B—C7B—C6B 121.01 (16)
C6—N2—H1N2 121.2 (13) C8B—C7B—H7B 119.5
N3—N2—H1N2 119.8 (12) C6B—C7B—H7B 119.5
C7—N3—N2 116.20 (12) C9B—C8B—C7B 117.49 (15)
C11—O2—C14 117.57 (14) C9B—C8B—H8B 121.3
O1A—C1A—O2A 124.36 (17) C7B—C8B—H8B 121.3
O1A—C1A—C2A 120.76 (17) C8B—C9B—C4B 121.20 (15)
O2A—C1A—C2A 114.78 (15) C8B—C9B—C10B 130.71 (14)
N1A—C2A—C1A 113.27 (14) C4B—C9B—C10B 108.08 (13)
N1A—C2A—H2A1 108.9 O4B—C10B—N1B 124.78 (15)
C1A—C2A—H2A1 108.9 O4B—C10B—C9B 129.25 (15)
N1A—C2A—H2A2 108.9 N1B—C10B—C9B 105.98 (12)
C1A—C2A—H2A2 108.9 C10B—N1B—C3B 112.14 (13)
H2A1—C2A—H2A2 107.7 C10B—N1B—C2B 123.63 (13)
O3A—C3A—N1A 124.53 (16) C3B—N1B—C2B 123.10 (13)
O3A—C3A—C4A 129.13 (16) C1B—O2B—H1OB 112.4 (14)
N1A—C3A—C4A 106.33 (14)
N1—C1—C2—C3 0.0 (3) C3A—C4A—C9A—C10A 0.63 (18)
C1—C2—C3—C4 0.4 (2) C8A—C9A—C10A—O4A −2.3 (3)
C1—C2—C3—C6 −178.24 (15) C4A—C9A—C10A—O4A 179.28 (18)
C2—C3—C4—C5 −0.5 (2) C8A—C9A—C10A—N1A 178.19 (19)
C6—C3—C4—C5 178.00 (15) C4A—C9A—C10A—N1A −0.28 (18)
C3—C4—C5—N1 0.3 (3) O4A—C10A—N1A—C3A −179.81 (16)
C4—C3—C6—O1 −167.66 (15) C9A—C10A—N1A—C3A −0.21 (18)
C2—C3—C6—O1 10.8 (2) O4A—C10A—N1A—C2A 9.5 (3)
C4—C3—C6—N2 11.7 (2) C9A—C10A—N1A—C2A −170.92 (14)
C2—C3—C6—N2 −169.80 (14) O3A—C3A—N1A—C10A −179.69 (16)
N3—C7—C8—C13 170.94 (14) C4A—C3A—N1A—C10A 0.59 (17)
N3—C7—C8—C9 −9.4 (2) O3A—C3A—N1A—C2A −9.2 (3)
C13—C8—C9—C10 0.1 (3) C4A—C3A—N1A—C2A 171.05 (14)
C7—C8—C9—C10 −179.63 (16) C1A—C2A—N1A—C10A 80.2 (2)
C8—C9—C10—C11 −1.8 (3) C1A—C2A—N1A—C3A −89.3 (2)
C9—C10—C11—O2 179.91 (16) O1B—C1B—C2B—N1B 1.4 (2)
C9—C10—C11—C12 1.8 (3) O2B—C1B—C2B—N1B −179.70 (12)
O2—C11—C12—C13 −178.07 (16) O3B—C3B—C4B—C5B −2.0 (3)
C10—C11—C12—C13 −0.2 (3) N1B—C3B—C4B—C5B 178.67 (15)
C9—C8—C13—C12 1.5 (2) O3B—C3B—C4B—C9B 179.29 (16)
C7—C8—C13—C12 −178.76 (15) N1B—C3B—C4B—C9B −0.02 (16)
C11—C12—C13—C8 −1.5 (3) C9B—C4B—C5B—C6B −0.4 (2)
C4—C5—N1—C1 0.0 (3) C3B—C4B—C5B—C6B −178.94 (15)
C2—C1—N1—C5 −0.1 (3) C4B—C5B—C6B—C7B −0.4 (2)
O1—C6—N2—N3 −1.0 (2) C5B—C6B—C7B—C8B 0.5 (3)
C3—C6—N2—N3 179.68 (12) C6B—C7B—C8B—C9B 0.1 (2)
C8—C7—N3—N2 179.59 (13) C7B—C8B—C9B—C4B −0.9 (2)
C6—N2—N3—C7 −179.03 (13) C7B—C8B—C9B—C10B 177.81 (15)
C12—C11—O2—C14 −8.0 (3) C5B—C4B—C9B—C8B 1.0 (2)
C10—C11—O2—C14 174.13 (16) C3B—C4B—C9B—C8B 179.88 (13)
O1A—C1A—C2A—N1A −161.2 (2) C5B—C4B—C9B—C10B −177.90 (13)
O2A—C1A—C2A—N1A 22.3 (2) C3B—C4B—C9B—C10B 0.93 (16)
O3A—C3A—C4A—C5A 1.4 (3) C8B—C9B—C10B—O4B −0.1 (3)
N1A—C3A—C4A—C5A −178.94 (17) C4B—C9B—C10B—O4B 178.70 (15)
O3A—C3A—C4A—C9A 179.55 (17) C8B—C9B—C10B—N1B 179.68 (15)
N1A—C3A—C4A—C9A −0.75 (17) C4B—C9B—C10B—N1B −1.50 (16)
C9A—C4A—C5A—C6A −0.7 (3) O4B—C10B—N1B—C3B −178.65 (14)
C3A—C4A—C5A—C6A 177.28 (17) C9B—C10B—N1B—C3B 1.54 (16)
C4A—C5A—C6A—C7A 0.5 (3) O4B—C10B—N1B—C2B −10.5 (2)
C5A—C6A—C7A—C8A 0.0 (3) C9B—C10B—N1B—C2B 169.65 (13)
C6A—C7A—C8A—C9A −0.3 (3) O3B—C3B—N1B—C10B 179.65 (14)
C7A—C8A—C9A—C4A 0.1 (3) C4B—C3B—N1B—C10B −0.99 (16)
C7A—C8A—C9A—C10A −178.19 (19) O3B—C3B—N1B—C2B 11.5 (2)
C5A—C4A—C9A—C8A 0.4 (3) C4B—C3B—N1B—C2B −169.17 (13)
C3A—C4A—C9A—C8A −178.01 (17) C1B—C2B—N1B—C10B −71.42 (18)
C5A—C4A—C9A—C10A 179.01 (15) C1B—C2B—N1B—C3B 95.41 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2A—H1OA···N1 1.00 (3) 1.60 (3) 2.5997 (19) 177 (2)
O2B—H1OB···O1 0.93 (2) 1.75 (2) 2.6736 (16) 170 (2)
N2—H1N2···O4Bi 0.87 (2) 2.22 (2) 3.0549 (18) 161 (2)
C2A—H2A2···O3Bii 0.97 2.57 3.477 (2) 156
C5B—H5B···O1iii 0.93 2.51 3.158 (2) 126
C7B—H7B···O3Biv 0.93 2.55 3.275 (2) 135
C5—H5···O3Av 0.93 2.48 3.341 (2) 154

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x−1, y−1, z−1; (iii) −x+1, −y+3, −z+1; (iv) x+1, y, z; (v) −x−1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2799).

References

  1. Barooah, N., Sarma, R. J., Batsanov, A. S. & Baruah, J. B. (2006). J. Mol. Struct. 791, 122–130.
  2. Bijev, A. (2006). Lett. Drug. Des. Discov. 3, 506–512.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  5. Feeder, N. & Jones, W. (1994). Acta Cryst. C50, 820–823.
  6. Feeder, N. & Jones, W. (1996). Acta Cryst. C52, 913–919.
  7. Imramovský, A., Polanc, S., Vinšnová, J., Kočevar, M., Jampílek, J., Rečková, Z. & Kaustová, J. (2007). Bioorg. Med. Chem. 15, 2551–2559. [DOI] [PubMed]
  8. Jing, Z.-L., Fan, Z., Yu, M., Chen, X. & Deng, Q.-L. (2005). Acta Cryst. E61, o3208–o3209.
  9. Lin, M. & Liu, S.-X. (2007). Acta Cryst. E63, o3974.
  10. Maccari, R., Ottana, R. & Vigorita, M. G. (2005). Bioorg. Med. Chem. Lett. 15, 2509–2513. [DOI] [PubMed]
  11. Mohamed, S. K., Farrukh, M. A., Akkurt, M., Albayati, M. R. & Abdelhamid, A. A. (2012). Acta Cryst. E68, o2442. [DOI] [PMC free article] [PubMed]
  12. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  13. Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  14. Rajpurohit, S. & Sah, P. (2005). Asian J. Chem. 17, 949–954.
  15. Schultheiss, N. & Newman, A. (2009). Cryst. Growth Des. 9, 2950–2967. [DOI] [PMC free article] [PubMed]
  16. Shanmuga Sundara Raj, S., Fun, H.-K., Lu, Z.-L., Xiao, W., Tong, Y.-X. & Kang, B.-S. (1999). Acta Cryst. C55, 942–944.
  17. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  18. Shindikar, A. V. & Viswanathan, C. L. (2005). Bioorg. Med. Chem. Lett. 15, 1803–1806. [DOI] [PubMed]
  19. Sinha, N., Jain, S., Tilekar, A., Upadhayaya, R. S., Kishore, N., Jana, G. H. & Arora, S. K. (2005). Bioorg. Med. Chem. Lett. 15, 1573–1576. [DOI] [PubMed]
  20. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  21. Wardell, S. M. S. V., de Souza, M. V. N., Wardell, J. L., Low, J. N. & Glidewell, C. (2007). Acta Cryst. B63, 879–895. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812038032/rz2799sup1.cif

e-68-o2897-sup1.cif (37.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812038032/rz2799Isup2.hkl

e-68-o2897-Isup2.hkl (283.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812038032/rz2799Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES