Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Sep 8;68(Pt 10):o2906. doi: 10.1107/S1600536812037956

5′′-(2,4-Dichloro­benzyl­idene)-1′-(2,4-dichloro­phen­yl)-1′′-methyl-1′,2′,3′,5′,6′,7′,8′,8a’-octa­hydro­dispiro­[acenaphthyl­ene-1,3′-indolizine-2′,3′′-piperidine]-2,4′′(1H)-dione

J Suresh a, R Vishnupriya a, R Ranjith Kumar b, S Sivakumar b, P L Nilantha Lakshman c,*
PMCID: PMC3470255  PMID: 23125699

Abstract

In the title compound, C37H30Cl4N2O2, the pyridinone ring adopts a twisted half-chair conformation. In the octa­hydro­indolizine fused-ring system, the piperidine ring is in a chair conformation and the pyrrole ring is twisted about the C—N bond linking the five- and six-membered rings. The mol­ecular structure features an intra­molecular C—H⋯O inter­action and the crystal packing is stabilized by C—H⋯π inter­actions.

Related literature  

For the importance of spiro compounds, see: Biava et al. (2006); Chande et al. (2005); Dandia et al. (2003); Shaharyar et al. (2006); Sriram et al. (2006). For related acenaphthyl­ene structures, see: Hazell & Hazell (1977); Hazell & Weigelt (1976); Jones et al. (1992); Sundar et al. (2002).graphic file with name e-68-o2906-scheme1.jpg

Experimental  

Crystal data  

  • C37H30Cl4N2O2

  • M r = 676.43

  • Monoclinic, Inline graphic

  • a = 8.5695 (2) Å

  • b = 16.1634 (5) Å

  • c = 23.8325 (7) Å

  • β = 92.399 (2)°

  • V = 3298.20 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 293 K

  • 0.23 × 0.21 × 0.19 mm

Data collection  

  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.967, T max = 0.974

  • 29915 measured reflections

  • 5750 independent reflections

  • 4518 reflections with I > 2σ(I)

  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.105

  • S = 1.08

  • 5750 reflections

  • 407 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.55 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812037956/tk5147sup1.cif

e-68-o2906-sup1.cif (29.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812037956/tk5147Isup2.hkl

e-68-o2906-Isup2.hkl (281.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C32–C37 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O2 0.98 2.50 3.122 (3) 121
C10—H10a⋯Cg1i 0.97 2.68 3.5969 158

Symmetry code: (i) Inline graphic.

Acknowledgments

JS thanks the UGC for the FIST support. JS and RV thank the management of Madura College for their encouragement and support. RRK thanks the DST, New Delhi, for funds under the fast-track scheme (No. SR/FT/CS-073/2009).

supplementary crystallographic information

Comment

In general, spiro compounds and nitrogen heterocycles display good anti-mycobacterial activities (Chande et al., 2005; Dandia et al., 2003; Sriram et al., 2006; Biava et al., 2006; Shaharyar et al., 2006) . It is also pertinent to note that the synthesis of biologically active indolizine derivatives continues to attract the attention of organic chemists, because of their wide spectrum of biological activity.

In the title compound (Fig. 1) the pyridinone ring adopts twisted half-chair conformation with atoms N1 and C5 deviating by -0.638 (2) and -0.465 (2) Å, respectively, from the least-squares plane defined by the other atoms (C2/C3/C4/C6). Within the octahydroindolizine fused ring system, the piperidine ring is in a chair conformation and the pyrrole ring is twisted about the N2—C8 bond. The C—C bond lengths and C—C—C angles in the acenaphthylene group compare with those of related structures (Hazell & Hazell, 1977; Hazell & Weigelt, 1976; Jones et al., 1992; Sundar et al., 2002). The observed conformation of the pyrrole ring may be due to the presence of an intramolecular C8—H8···O2 interaction (Table 1). The dihedral angle between the dichlorobenzene rings is 67.2 (1)° and these rings form angles of 46.8 (1) and 68.6 (1)° with the acenaphthene group, respectively. The sum of the bond angles at N2 of the pyrrole ring is 337.78°, indicating sp3-hybridization.

A weak C—H···π interaction (Table 1) viz., C10—H10···Cg1 is observed (Cg1 is the centroid of the ring C32—C37).

Experimental

A mixture of 1-methyl-3,5-bis[(E)-2,4-dichloro phenylmethylidene]tetrahydro-4(1H)-pyridinone (1 mmol), acenaphthenequinone (1 mmol) and piperidine-2-carboxylic acid (1 mmol) was dissolved in isopropyl alcohol (15 ml) and heated to reflux for 60 min. After completion of the reaction as evident from TLC, the mixture was poured into water (50 ml), the precipitated solid was filtered and washed with water (100 ml) to obtain pure yellow solid. The product was recrystallized from ethyl acetate to obtain suitable crystals of (I) for X-ray analysis having a melting point of 480 K (Yield: 96%).

Refinement

H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.98 Å, and Uiso = 1.2Ueq(C) for CH2 and CH H atoms and Uiso = 1.5Ueq(C) for CH3 H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing 20% probability displacement ellipsoids and the atom-numbering scheme. H-atoms are omitted for clarity.

Crystal data

C37H30Cl4N2O2 F(000) = 1400
Mr = 676.43 Dx = 1.362 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2000 reflections
a = 8.5695 (2) Å θ = 2–31°
b = 16.1634 (5) Å µ = 0.40 mm1
c = 23.8325 (7) Å T = 293 K
β = 92.399 (2)° Block, colourless
V = 3298.20 (16) Å3 0.23 × 0.21 × 0.19 mm
Z = 4

Data collection

Bruker Kappa APEXII diffractometer 5750 independent reflections
Radiation source: fine-focus sealed tube 4518 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
Detector resolution: 0 pixels mm-1 θmax = 25.0°, θmin = 2.1°
ω and φ scans h = −10→10
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −19→19
Tmin = 0.967, Tmax = 0.974 l = −28→28
29915 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.035P)2 + 2.1249P] where P = (Fo2 + 2Fc2)/3
5750 reflections (Δ/σ)max < 0.001
407 parameters Δρmax = 0.60 e Å3
0 restraints Δρmin = −0.55 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.1592 (3) 0.47714 (17) 0.28069 (11) 0.0528 (6)
H1A −0.2056 0.4443 0.3091 0.079*
H1B −0.2226 0.4742 0.2466 0.079*
H1C −0.1518 0.5336 0.2930 0.079*
C2 0.0685 (2) 0.49258 (14) 0.22637 (9) 0.0412 (5)
H2A 0.0701 0.5507 0.2364 0.049*
H2B 0.0059 0.4866 0.1917 0.049*
C3 0.2331 (2) 0.46418 (12) 0.21678 (8) 0.0345 (5)
C4 0.3245 (2) 0.42014 (13) 0.26274 (8) 0.0344 (5)
C5 0.2333 (2) 0.38735 (12) 0.31178 (8) 0.0301 (4)
C6 0.0974 (2) 0.44638 (12) 0.32082 (8) 0.0333 (4)
H6A 0.0398 0.4287 0.3529 0.040*
H6B 0.1364 0.5019 0.3280 0.040*
C7 0.3420 (2) 0.37231 (12) 0.36537 (8) 0.0329 (4)
H7 0.4501 0.3790 0.3542 0.039*
C8 0.3193 (2) 0.28148 (13) 0.37979 (8) 0.0359 (5)
H8 0.2270 0.2756 0.4024 0.043*
C9 0.4565 (3) 0.23864 (15) 0.40912 (10) 0.0499 (6)
H9A 0.4741 0.2615 0.4465 0.060*
H9B 0.5499 0.2476 0.3883 0.060*
C10 0.4239 (3) 0.14666 (16) 0.41318 (11) 0.0603 (7)
H10A 0.5147 0.1188 0.4299 0.072*
H10B 0.3370 0.1376 0.4372 0.072*
C11 0.3854 (3) 0.11052 (15) 0.35563 (11) 0.0566 (7)
H11A 0.3583 0.0526 0.3593 0.068*
H11B 0.4763 0.1142 0.3328 0.068*
C12 0.2503 (3) 0.15664 (13) 0.32705 (10) 0.0468 (6)
H12A 0.2310 0.1354 0.2893 0.056*
H12B 0.1565 0.1486 0.3478 0.056*
C13 0.1744 (2) 0.29741 (12) 0.29436 (8) 0.0324 (4)
C14 0.0011 (2) 0.28284 (13) 0.31192 (10) 0.0413 (5)
C15 −0.0909 (3) 0.25445 (15) 0.26233 (12) 0.0519 (6)
C16 0.0097 (3) 0.24771 (14) 0.21835 (10) 0.0490 (6)
C17 0.1641 (3) 0.27180 (13) 0.23272 (9) 0.0387 (5)
C18 0.2754 (3) 0.26134 (15) 0.19449 (10) 0.0523 (6)
H18 0.3790 0.2750 0.2032 0.063*
C19 0.2300 (4) 0.22907 (17) 0.14080 (11) 0.0714 (9)
H19 0.3056 0.2220 0.1143 0.086*
C20 0.0795 (5) 0.20812 (18) 0.12678 (12) 0.0804 (10)
H20 0.0542 0.1881 0.0910 0.097*
C21 −0.0373 (4) 0.21633 (17) 0.16545 (13) 0.0691 (9)
C22 −0.1976 (5) 0.1935 (2) 0.15962 (18) 0.1010 (14)
H22 −0.2364 0.1722 0.1256 0.121*
C23 −0.2948 (4) 0.2021 (2) 0.2026 (2) 0.1132 (16)
H23 −0.3991 0.1872 0.1969 0.136*
C24 −0.2451 (3) 0.23215 (19) 0.25496 (17) 0.0831 (10)
H24 −0.3138 0.2370 0.2840 0.100*
C31 0.3044 (3) 0.47215 (13) 0.16838 (9) 0.0387 (5)
H31 0.4048 0.4503 0.1681 0.046*
C32 0.2482 (3) 0.51001 (14) 0.11587 (9) 0.0411 (5)
C33 0.1588 (3) 0.58133 (16) 0.11353 (10) 0.0547 (6)
H33 0.1286 0.6048 0.1470 0.066*
C34 0.1126 (3) 0.61910 (19) 0.06375 (11) 0.0678 (8)
H34 0.0530 0.6672 0.0636 0.081*
C35 0.1566 (3) 0.58405 (18) 0.01424 (11) 0.0617 (7)
C36 0.2467 (4) 0.51463 (17) 0.01395 (10) 0.0624 (7)
H36 0.2769 0.4919 −0.0197 0.075*
C37 0.2923 (3) 0.47867 (15) 0.06447 (10) 0.0516 (6)
C71 0.3175 (2) 0.43159 (13) 0.41354 (8) 0.0352 (5)
C72 0.2167 (3) 0.41435 (15) 0.45610 (9) 0.0479 (6)
H72 0.1644 0.3639 0.4554 0.058*
C73 0.1907 (3) 0.46867 (16) 0.49932 (10) 0.0528 (6)
H73 0.1234 0.4546 0.5274 0.063*
C74 0.2651 (3) 0.54342 (15) 0.50045 (9) 0.0466 (6)
C75 0.3684 (3) 0.56349 (14) 0.46038 (10) 0.0450 (5)
H75 0.4208 0.6139 0.4617 0.054*
C76 0.3935 (2) 0.50758 (13) 0.41784 (9) 0.0372 (5)
N1 −0.00377 (18) 0.44574 (10) 0.27062 (7) 0.0347 (4)
N2 0.28776 (19) 0.24449 (10) 0.32468 (7) 0.0343 (4)
O1 0.46323 (17) 0.40792 (11) 0.25980 (6) 0.0502 (4)
O2 −0.04270 (19) 0.28802 (10) 0.35931 (7) 0.0543 (4)
Cl1 0.52441 (8) 0.53684 (4) 0.36800 (3) 0.05731 (18)
Cl2 0.22476 (9) 0.61427 (5) 0.55258 (3) 0.0710 (2)
Cl3 0.41405 (13) 0.39329 (5) 0.06305 (3) 0.0963 (3)
Cl4 0.10043 (13) 0.63040 (7) −0.04898 (3) 0.1064 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0365 (12) 0.0663 (16) 0.0561 (15) 0.0121 (11) 0.0088 (11) 0.0120 (13)
C2 0.0388 (12) 0.0477 (13) 0.0374 (12) 0.0057 (10) 0.0034 (9) 0.0070 (10)
C3 0.0359 (11) 0.0340 (11) 0.0335 (11) −0.0030 (9) 0.0022 (9) 0.0002 (9)
C4 0.0336 (12) 0.0363 (11) 0.0334 (11) −0.0025 (9) 0.0020 (9) −0.0024 (9)
C5 0.0314 (10) 0.0298 (10) 0.0292 (10) −0.0004 (8) 0.0007 (8) −0.0008 (8)
C6 0.0366 (11) 0.0310 (11) 0.0326 (10) 0.0017 (8) 0.0047 (9) −0.0002 (9)
C7 0.0332 (11) 0.0348 (11) 0.0305 (10) −0.0006 (8) −0.0011 (8) −0.0009 (9)
C8 0.0420 (12) 0.0352 (11) 0.0303 (10) 0.0008 (9) −0.0004 (9) 0.0005 (9)
C9 0.0603 (15) 0.0501 (14) 0.0382 (12) 0.0106 (12) −0.0123 (11) 0.0035 (11)
C10 0.0800 (19) 0.0476 (15) 0.0524 (15) 0.0169 (13) −0.0087 (13) 0.0122 (12)
C11 0.0717 (17) 0.0365 (13) 0.0612 (16) 0.0109 (12) −0.0033 (13) 0.0049 (12)
C12 0.0572 (14) 0.0318 (12) 0.0511 (14) −0.0005 (10) −0.0007 (11) −0.0021 (10)
C13 0.0334 (11) 0.0319 (11) 0.0317 (10) 0.0012 (8) 0.0000 (8) −0.0009 (8)
C14 0.0380 (12) 0.0295 (11) 0.0565 (14) 0.0002 (9) 0.0028 (11) −0.0023 (10)
C15 0.0382 (13) 0.0392 (13) 0.0774 (17) 0.0008 (10) −0.0097 (12) −0.0119 (12)
C16 0.0562 (15) 0.0321 (12) 0.0565 (14) 0.0088 (10) −0.0228 (12) −0.0098 (11)
C17 0.0491 (13) 0.0306 (11) 0.0359 (11) 0.0072 (9) −0.0044 (10) −0.0025 (9)
C18 0.0714 (17) 0.0435 (14) 0.0425 (13) 0.0094 (12) 0.0064 (12) −0.0054 (11)
C19 0.124 (3) 0.0498 (16) 0.0408 (15) 0.0223 (17) 0.0108 (16) −0.0073 (12)
C20 0.135 (3) 0.0565 (18) 0.0467 (16) 0.0218 (19) −0.0341 (19) −0.0194 (14)
C21 0.090 (2) 0.0474 (16) 0.0660 (18) 0.0200 (15) −0.0392 (17) −0.0195 (14)
C22 0.098 (3) 0.072 (2) 0.126 (3) 0.017 (2) −0.073 (3) −0.045 (2)
C23 0.062 (2) 0.088 (3) 0.184 (5) 0.0097 (19) −0.053 (3) −0.060 (3)
C24 0.0433 (16) 0.0658 (19) 0.139 (3) −0.0031 (13) −0.0139 (17) −0.034 (2)
C31 0.0401 (12) 0.0392 (12) 0.0371 (11) −0.0011 (9) 0.0057 (9) 0.0017 (9)
C32 0.0464 (13) 0.0440 (13) 0.0333 (11) −0.0033 (10) 0.0064 (9) 0.0041 (10)
C33 0.0643 (16) 0.0579 (16) 0.0428 (13) 0.0110 (13) 0.0133 (12) 0.0093 (12)
C34 0.0735 (19) 0.0722 (19) 0.0583 (17) 0.0209 (15) 0.0104 (14) 0.0213 (15)
C35 0.0736 (18) 0.0696 (19) 0.0410 (14) −0.0047 (15) −0.0083 (13) 0.0177 (13)
C36 0.098 (2) 0.0576 (17) 0.0318 (13) −0.0112 (15) 0.0047 (13) 0.0001 (12)
C37 0.0712 (16) 0.0455 (14) 0.0387 (13) −0.0027 (12) 0.0096 (11) 0.0024 (11)
C71 0.0371 (11) 0.0377 (12) 0.0302 (10) 0.0017 (9) −0.0060 (9) −0.0017 (9)
C72 0.0546 (14) 0.0475 (14) 0.0422 (13) −0.0101 (11) 0.0071 (11) −0.0067 (11)
C73 0.0588 (15) 0.0581 (16) 0.0423 (13) −0.0031 (12) 0.0116 (11) −0.0089 (12)
C74 0.0498 (14) 0.0498 (14) 0.0394 (12) 0.0084 (11) −0.0071 (10) −0.0132 (11)
C75 0.0464 (13) 0.0390 (12) 0.0486 (13) 0.0007 (10) −0.0093 (11) −0.0077 (10)
C76 0.0364 (11) 0.0374 (12) 0.0372 (11) 0.0030 (9) −0.0050 (9) 0.0008 (9)
N1 0.0307 (9) 0.0390 (10) 0.0345 (9) 0.0035 (7) 0.0031 (7) 0.0028 (8)
N2 0.0392 (9) 0.0288 (9) 0.0345 (9) 0.0026 (7) −0.0034 (7) −0.0013 (7)
O1 0.0323 (9) 0.0762 (12) 0.0424 (9) 0.0019 (8) 0.0045 (7) 0.0069 (8)
O2 0.0505 (10) 0.0524 (10) 0.0617 (11) −0.0038 (8) 0.0217 (8) −0.0015 (8)
Cl1 0.0639 (4) 0.0448 (3) 0.0646 (4) −0.0102 (3) 0.0189 (3) −0.0010 (3)
Cl2 0.0791 (5) 0.0718 (5) 0.0623 (4) 0.0039 (4) 0.0055 (3) −0.0346 (4)
Cl3 0.1647 (9) 0.0739 (5) 0.0531 (4) 0.0479 (5) 0.0376 (5) 0.0068 (4)
Cl4 0.1384 (8) 0.1225 (8) 0.0564 (5) 0.0076 (6) −0.0180 (5) 0.0381 (5)

Geometric parameters (Å, º)

C1—N1 1.454 (3) C15—C24 1.374 (4)
C1—H1A 0.9600 C15—C16 1.389 (4)
C1—H1B 0.9600 C16—C21 1.402 (3)
C1—H1C 0.9600 C16—C17 1.408 (3)
C2—N1 1.457 (3) C17—C18 1.357 (3)
C2—C3 1.510 (3) C18—C19 1.421 (4)
C2—H2A 0.9700 C18—H18 0.9300
C2—H2B 0.9700 C19—C20 1.361 (5)
C3—C31 1.334 (3) C19—H19 0.9300
C3—C4 1.500 (3) C20—C21 1.395 (5)
C4—O1 1.210 (2) C20—H20 0.9300
C4—C5 1.528 (3) C21—C22 1.424 (5)
C5—C6 1.528 (3) C22—C23 1.355 (6)
C5—C7 1.568 (3) C22—H22 0.9300
C5—C13 1.588 (3) C23—C24 1.389 (5)
C6—N1 1.448 (3) C23—H23 0.9300
C6—H6A 0.9700 C24—H24 0.9300
C6—H6B 0.9700 C31—C32 1.457 (3)
C7—C71 1.517 (3) C31—H31 0.9300
C7—C8 1.522 (3) C32—C33 1.384 (3)
C7—H7 0.9800 C32—C37 1.393 (3)
C8—N2 1.458 (3) C33—C34 1.377 (3)
C8—C9 1.511 (3) C33—H33 0.9300
C8—H8 0.9800 C34—C35 1.376 (4)
C9—C10 1.517 (4) C34—H34 0.9300
C9—H9A 0.9700 C35—C36 1.362 (4)
C9—H9B 0.9700 C35—Cl4 1.733 (3)
C10—C11 1.514 (4) C36—C37 1.379 (3)
C10—H10A 0.9700 C36—H36 0.9300
C10—H10B 0.9700 C37—Cl3 1.731 (3)
C11—C12 1.515 (3) C71—C72 1.387 (3)
C11—H11A 0.9700 C71—C76 1.392 (3)
C11—H11B 0.9700 C72—C73 1.379 (3)
C12—N2 1.457 (3) C72—H72 0.9300
C12—H12A 0.9700 C73—C74 1.366 (3)
C12—H12B 0.9700 C73—H73 0.9300
C13—N2 1.462 (3) C74—C75 1.368 (3)
C13—C17 1.525 (3) C74—Cl2 1.735 (2)
C13—C14 1.578 (3) C75—C76 1.382 (3)
C14—O2 1.208 (3) C75—H75 0.9300
C14—C15 1.467 (3) C76—Cl1 1.733 (2)
N1—C1—H1A 109.5 C24—C15—C16 120.5 (3)
N1—C1—H1B 109.5 C24—C15—C14 131.8 (3)
H1A—C1—H1B 109.5 C16—C15—C14 107.7 (2)
N1—C1—H1C 109.5 C15—C16—C21 122.9 (3)
H1A—C1—H1C 109.5 C15—C16—C17 113.7 (2)
H1B—C1—H1C 109.5 C21—C16—C17 123.4 (3)
N1—C2—C3 112.30 (17) C18—C17—C16 118.8 (2)
N1—C2—H2A 109.1 C18—C17—C13 131.8 (2)
C3—C2—H2A 109.1 C16—C17—C13 108.99 (19)
N1—C2—H2B 109.1 C17—C18—C19 118.5 (3)
C3—C2—H2B 109.1 C17—C18—H18 120.8
H2A—C2—H2B 107.9 C19—C18—H18 120.8
C31—C3—C4 115.66 (18) C20—C19—C18 122.2 (3)
C31—C3—C2 124.5 (2) C20—C19—H19 118.9
C4—C3—C2 119.79 (17) C18—C19—H19 118.9
O1—C4—C3 121.33 (18) C19—C20—C21 120.8 (3)
O1—C4—C5 121.55 (18) C19—C20—H20 119.6
C3—C4—C5 117.04 (16) C21—C20—H20 119.6
C6—C5—C4 108.00 (16) C20—C21—C16 116.2 (3)
C6—C5—C7 114.36 (15) C20—C21—C22 128.8 (3)
C4—C5—C7 111.76 (16) C16—C21—C22 114.9 (3)
C6—C5—C13 111.90 (16) C23—C22—C21 121.4 (3)
C4—C5—C13 106.54 (15) C23—C22—H22 119.3
C7—C5—C13 104.03 (15) C21—C22—H22 119.3
N1—C6—C5 108.20 (15) C22—C23—C24 122.7 (3)
N1—C6—H6A 110.1 C22—C23—H23 118.7
C5—C6—H6A 110.1 C24—C23—H23 118.7
N1—C6—H6B 110.1 C15—C24—C23 117.6 (3)
C5—C6—H6B 110.1 C15—C24—H24 121.2
H6A—C6—H6B 108.4 C23—C24—H24 121.2
C71—C7—C8 114.53 (16) C3—C31—C32 129.5 (2)
C71—C7—C5 114.96 (16) C3—C31—H31 115.2
C8—C7—C5 104.84 (16) C32—C31—H31 115.2
C71—C7—H7 107.4 C33—C32—C37 116.0 (2)
C8—C7—H7 107.4 C33—C32—C31 123.2 (2)
C5—C7—H7 107.4 C37—C32—C31 120.7 (2)
N2—C8—C9 109.89 (17) C34—C33—C32 122.9 (2)
N2—C8—C7 102.28 (15) C34—C33—H33 118.6
C9—C8—C7 116.24 (18) C32—C33—H33 118.6
N2—C8—H8 109.4 C35—C34—C33 118.5 (3)
C9—C8—H8 109.4 C35—C34—H34 120.8
C7—C8—H8 109.4 C33—C34—H34 120.8
C8—C9—C10 109.7 (2) C36—C35—C34 121.3 (2)
C8—C9—H9A 109.7 C36—C35—Cl4 119.3 (2)
C10—C9—H9A 109.7 C34—C35—Cl4 119.4 (2)
C8—C9—H9B 109.7 C35—C36—C37 118.9 (2)
C10—C9—H9B 109.7 C35—C36—H36 120.6
H9A—C9—H9B 108.2 C37—C36—H36 120.6
C11—C10—C9 110.7 (2) C36—C37—C32 122.5 (2)
C11—C10—H10A 109.5 C36—C37—Cl3 117.91 (19)
C9—C10—H10A 109.5 C32—C37—Cl3 119.55 (19)
C11—C10—H10B 109.5 C72—C71—C76 115.28 (19)
C9—C10—H10B 109.5 C72—C71—C7 122.47 (19)
H10A—C10—H10B 108.1 C76—C71—C7 122.25 (18)
C10—C11—C12 110.5 (2) C73—C72—C71 122.9 (2)
C10—C11—H11A 109.5 C73—C72—H72 118.5
C12—C11—H11A 109.5 C71—C72—H72 118.5
C10—C11—H11B 109.5 C74—C73—C72 119.2 (2)
C12—C11—H11B 109.5 C74—C73—H73 120.4
H11A—C11—H11B 108.1 C72—C73—H73 120.4
N2—C12—C11 109.34 (19) C73—C74—C75 120.7 (2)
N2—C12—H12A 109.8 C73—C74—Cl2 119.40 (19)
C11—C12—H12A 109.8 C75—C74—Cl2 119.85 (19)
N2—C12—H12B 109.8 C74—C75—C76 118.8 (2)
C11—C12—H12B 109.8 C74—C75—H75 120.6
H12A—C12—H12B 108.3 C76—C75—H75 120.6
N2—C13—C17 109.14 (16) C75—C76—C71 123.0 (2)
N2—C13—C14 113.25 (16) C75—C76—Cl1 116.72 (17)
C17—C13—C14 101.40 (16) C71—C76—Cl1 120.31 (16)
N2—C13—C5 102.07 (15) C6—N1—C1 112.44 (17)
C17—C13—C5 120.34 (16) C6—N1—C2 109.68 (16)
C14—C13—C5 111.06 (15) C1—N1—C2 110.96 (17)
O2—C14—C15 126.7 (2) C12—N2—C8 113.42 (17)
O2—C14—C13 124.8 (2) C12—N2—C13 116.49 (17)
C15—C14—C13 108.24 (19) C8—N2—C13 107.43 (15)
N1—C2—C3—C31 153.9 (2) C17—C18—C19—C20 −0.3 (4)
N1—C2—C3—C4 −23.0 (3) C18—C19—C20—C21 −1.1 (4)
C31—C3—C4—O1 14.3 (3) C19—C20—C21—C16 0.6 (4)
C2—C3—C4—O1 −168.5 (2) C19—C20—C21—C22 −176.1 (3)
C31—C3—C4—C5 −162.48 (18) C15—C16—C21—C20 −175.8 (2)
C2—C3—C4—C5 14.7 (3) C17—C16—C21—C20 1.3 (4)
O1—C4—C5—C6 150.4 (2) C15—C16—C21—C22 1.4 (4)
C3—C4—C5—C6 −32.8 (2) C17—C16—C21—C22 178.5 (2)
O1—C4—C5—C7 23.8 (3) C20—C21—C22—C23 176.7 (4)
C3—C4—C5—C7 −159.43 (17) C16—C21—C22—C23 0.0 (5)
O1—C4—C5—C13 −89.2 (2) C21—C22—C23—C24 −1.0 (6)
C3—C4—C5—C13 87.6 (2) C16—C15—C24—C23 0.8 (4)
C4—C5—C6—N1 62.4 (2) C14—C15—C24—C23 −175.6 (3)
C7—C5—C6—N1 −172.48 (15) C22—C23—C24—C15 0.6 (6)
C13—C5—C6—N1 −54.5 (2) C4—C3—C31—C32 179.0 (2)
C6—C5—C7—C71 −12.6 (2) C2—C3—C31—C32 1.9 (4)
C4—C5—C7—C71 110.51 (19) C3—C31—C32—C33 38.4 (4)
C13—C5—C7—C71 −134.93 (17) C3—C31—C32—C37 −146.3 (2)
C6—C5—C7—C8 114.08 (18) C37—C32—C33—C34 1.2 (4)
C4—C5—C7—C8 −122.83 (17) C31—C32—C33—C34 176.7 (2)
C13—C5—C7—C8 −8.27 (19) C32—C33—C34—C35 0.4 (4)
C71—C7—C8—N2 158.36 (16) C33—C34—C35—C36 −1.4 (5)
C5—C7—C8—N2 31.43 (19) C33—C34—C35—Cl4 −179.9 (2)
C71—C7—C8—C9 −81.9 (2) C34—C35—C36—C37 0.8 (4)
C5—C7—C8—C9 151.13 (18) Cl4—C35—C36—C37 179.3 (2)
N2—C8—C9—C10 −56.6 (2) C35—C36—C37—C32 0.8 (4)
C7—C8—C9—C10 −172.14 (19) C35—C36—C37—Cl3 −177.1 (2)
C8—C9—C10—C11 55.6 (3) C33—C32—C37—C36 −1.8 (4)
C9—C10—C11—C12 −55.5 (3) C31—C32—C37—C36 −177.4 (2)
C10—C11—C12—N2 55.8 (3) C33—C32—C37—Cl3 176.12 (19)
C6—C5—C13—N2 −141.69 (16) C31—C32—C37—Cl3 0.5 (3)
C4—C5—C13—N2 100.49 (17) C8—C7—C71—C72 −29.0 (3)
C7—C5—C13—N2 −17.73 (18) C5—C7—C71—C72 92.5 (2)
C6—C5—C13—C17 97.4 (2) C8—C7—C71—C76 151.57 (19)
C4—C5—C13—C17 −20.4 (2) C5—C7—C71—C76 −86.9 (2)
C7—C5—C13—C17 −138.64 (17) C76—C71—C72—C73 1.0 (3)
C6—C5—C13—C14 −20.7 (2) C7—C71—C72—C73 −178.4 (2)
C4—C5—C13—C14 −138.51 (17) C71—C72—C73—C74 0.9 (4)
C7—C5—C13—C14 103.27 (18) C72—C73—C74—C75 −2.2 (4)
N2—C13—C14—O2 56.1 (3) C72—C73—C74—Cl2 176.50 (19)
C17—C13—C14—O2 172.9 (2) C73—C74—C75—C76 1.5 (4)
C5—C13—C14—O2 −58.1 (3) Cl2—C74—C75—C76 −177.16 (17)
N2—C13—C14—C15 −118.41 (19) C74—C75—C76—C71 0.5 (3)
C17—C13—C14—C15 −1.6 (2) C74—C75—C76—Cl1 179.48 (17)
C5—C13—C14—C15 127.42 (18) C72—C71—C76—C75 −1.7 (3)
O2—C14—C15—C24 4.5 (4) C7—C71—C76—C75 177.69 (19)
C13—C14—C15—C24 178.9 (3) C72—C71—C76—Cl1 179.33 (17)
O2—C14—C15—C16 −172.1 (2) C7—C71—C76—Cl1 −1.2 (3)
C13—C14—C15—C16 2.2 (2) C5—C6—N1—C1 161.08 (17)
C24—C15—C16—C21 −1.8 (4) C5—C6—N1—C2 −74.95 (19)
C14—C15—C16—C21 175.3 (2) C3—C2—N1—C6 52.4 (2)
C24—C15—C16—C17 −179.1 (2) C3—C2—N1—C1 177.25 (19)
C14—C15—C16—C17 −2.0 (3) C11—C12—N2—C8 −59.1 (2)
C15—C16—C17—C18 174.6 (2) C11—C12—N2—C13 175.37 (18)
C21—C16—C17—C18 −2.7 (3) C9—C8—N2—C12 60.0 (2)
C15—C16—C17—C13 0.9 (3) C7—C8—N2—C12 −175.93 (17)
C21—C16—C17—C13 −176.4 (2) C9—C8—N2—C13 −169.77 (17)
N2—C13—C17—C18 −52.3 (3) C7—C8—N2—C13 −45.73 (19)
C14—C13—C17—C18 −172.1 (2) C17—C13—N2—C12 −63.5 (2)
C5—C13—C17—C18 65.0 (3) C14—C13—N2—C12 48.6 (2)
N2—C13—C17—C16 120.24 (18) C5—C13—N2—C12 168.11 (17)
C14—C13—C17—C16 0.5 (2) C17—C13—N2—C8 168.05 (16)
C5—C13—C17—C16 −122.4 (2) C14—C13—N2—C8 −79.8 (2)
C16—C17—C18—C19 2.1 (3) C5—C13—N2—C8 39.66 (18)
C13—C17—C18—C19 174.1 (2)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C32–C37 ring.

D—H···A D—H H···A D···A D—H···A
C8—H8···O2 0.98 2.50 3.122 (3) 121
C10—H10a···Cg1i 0.97 2.68 3.5969 158

Symmetry code: (i) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5147).

References

  1. Biava, M., Porretta, G. C., Poce, G., Supino, S., Deidda, D., Pompei, R., Molicotti, P., Manetti, F. & Botta, M. J. (2006). Med. Chem. 49, 4946–4952. [DOI] [PubMed]
  2. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chande, M. S., Verma, R. S., Barve, P. A., Khanwelkar, R. R., Vaidya, R. B. & Ajaikumar, K. B. (2005). Eur. J. Med. Chem. 40, 1143–1148. [DOI] [PubMed]
  4. Dandia, A., Sati, M., Arya, K., Sharma, R. & Loupy, A. (2003). Chem. Pharm. Bull. 51, 1137–1141. [DOI] [PubMed]
  5. Hazell, A. C. & Hazell, R. G. (1977). Acta Cryst. B33, 360–365.
  6. Hazell, A. C. & Weigelt, Å. (1976). Acta Cryst. B32, 306–308.
  7. Jones, P. G., Bubenitschek, P., Sheldrick, G. M. & Dyker, G. (1992). Acta Cryst. C48, 1633–1635.
  8. Shaharyar, M., Siddiqui, A. A., Ali, M. A., Sriram, D. & Yogeeswari, P. (2006). Bioorg. Med. Chem. Lett. 16, 3947–3949. [DOI] [PubMed]
  9. Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Sriram, D., Yogeeswari, P. & Madhu, K. (2006). Bioorg. Med. Chem. Lett. 16, 876–878. [DOI] [PubMed]
  13. Sundar, T. V., Parthasarathi, V., Álvarez-Rúa, C., García-Granda, S., Saxena, A., Pardasani, P. & Pardasani, R. T. (2002). Acta Cryst. E58, o1405–o1407.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812037956/tk5147sup1.cif

e-68-o2906-sup1.cif (29.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812037956/tk5147Isup2.hkl

e-68-o2906-Isup2.hkl (281.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES