Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Sep 12;68(Pt 10):o2915. doi: 10.1107/S1600536812038238

3-(2-Acetamido­eth­yl)-1H-indol-5-yl 4-nitro­phenyl carbonate

Jan K Maurin a,b,*, Anna Zawadzka c, Iwona Łozińska c, Zbigniew Czarnocki c
PMCID: PMC3470262  PMID: 23125706

Abstract

In the title mol­ecule, C19H17N3O6, the indole ring system is essentially planar (r.m.s. deviation = 0.009 Å) and forms a dihedral angle of 31.96 (9)° with the nitro-substituted benzene ring. In the crystal, mol­ecules are linked by pairs of N—H⋯O hydrogen bonds, forming inversion dimers which are connected by further N—H⋯O hydrogen bonds into a two-dimensional network parallel to (102).

Related literature  

For background to and potential applications of the title compound, see: Freer & McKillop (1996); Um et al. (2006, 2008); Gray et al. (1977); Zawadzka et al. (2012).graphic file with name e-68-o2915-scheme1.jpg

Experimental  

Crystal data  

  • C19H17N3O6

  • M r = 383.36

  • Monoclinic, Inline graphic

  • a = 12.3678 (3) Å

  • b = 5.0537 (1) Å

  • c = 29.1554 (6) Å

  • β = 92.071 (2)°

  • V = 1821.11 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.89 mm−1

  • T = 293 K

  • 0.40 × 0.10 × 0.07 mm

Data collection  

  • Oxford Diffraction Xcalibur Ruby diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2010) T min = 0.802, T max = 0.956

  • 16657 measured reflections

  • 3397 independent reflections

  • 2413 reflections with I > 2σ(I)

  • R int = 0.034

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.138

  • S = 1.06

  • 3397 reflections

  • 260 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812038238/lh5522sup1.cif

e-68-o2915-sup1.cif (20.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812038238/lh5522Isup2.hkl

e-68-o2915-Isup2.hkl (166.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812038238/lh5522Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.87 (2) 2.01 (2) 2.882 (2) 177 (2)
N12—H12⋯O6ii 0.77 (3) 2.54 (3) 3.207 (3) 147 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was in part supported by the National Science Center (grant 2011/03/B/ST5/01593).

supplementary crystallographic information

Comment

The title compound is one of the aromatic carbonates, which constitute an important class of esters which facilitate the synthesis of a carbamate bond in the nucleofilic substitution reaction of carbonate derivatives with amines (Freer & McKillop, 1996; Um et al., 2006;2008). It is also a derivative which has potential use in peptide synthesis (Gray et al., 1977). We have used the title compound in the synthesis of novel tacrine-melatonine heterodimers (Zawadzka, et al., 2012).

The title compound consists of three major planar fragments and a large flexible substituent having several degrees of freedom. The planar fragments are the p-nitrophenyl fragment, carbonate group and indole group. The r.m.s. deviations of in-plane atoms for the respective planes are 0.006, 0.009 and 0.009 Å, respectively. The carbonate group forms a dihedral angle of 80.54 (8)° with the nitro-substituted benzene ring and forms a dihedral angle of 73.23 (6)° with the indole ring system. The nitro group is slightly rotated from the plane of the attached benzene ring with a dihedral angle of 8.0 (4)°. In general the bond lengths and angles have expected values. The benzene ring may affected by anistropic displacement causing slightly shorter than expected bond lengths to be observed. In the crystal, molecules are linked by a pair of N—H···O hydrogen bonds to forms inversion dimers which are connected by further N—H···O hydrogen bonds to form a two-dimensional network parallel to (102) (Table 1 and Fig. 2).

Experimental

To a solution of N-[2-(5-hydroxy-1H-indol-3-yl)ethyl]acetamide (0.9 g, 4 mmol) in N-methylomorfoline (0.92 ml, 8 mmol) 4-nitrophenyl chloroformate (1.61 g, 8 mmol) dissolved in 1 ml of tetrahydrofuran was added. The reaction mixture was stirred under argon for 1 h at room temperature. Evaporation of the solvents gave a residue that was purified by silica gel chromatography using a mixture of methylene chloride/methanol 95:5 as eluent to produce the title compound (0.92 g, 60%) as a yellow solid. Crystals suitable for X-ray analysis were obtained by slow evaporation of a solution of the title compound in a methylene chloride/methanol/diethyl ether mixture.

Refinement

H atoms bonded to C atoms were placed in calculated positions with distances in the range 0.93-0.97Å and inlcuded in the refinement with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl). The positional parameters of the H atoms bonded to N atoms were refined independently with Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 30% dispalcement ellipsoids.

Fig. 2.

Fig. 2.

Part of the crystal structure with hydrogen bonds shown as dshed lines.

Crystal data

C19H17N3O6 F(000) = 800
Mr = 383.36 Dx = 1.398 Mg m3
Monoclinic, P21/c Melting point: 426 K
Hall symbol: -P 2ybc Cu Kα radiation, λ = 1.54178 Å
a = 12.3678 (3) Å Cell parameters from 5868 reflections
b = 5.0537 (1) Å θ = 3.0–70.0°
c = 29.1554 (6) Å µ = 0.89 mm1
β = 92.071 (2)° T = 293 K
V = 1821.11 (7) Å3 Parallelepiped, colourless
Z = 4 0.40 × 0.10 × 0.07 mm

Data collection

Oxford Diffraction Xcalibur Ruby diffractometer 3397 independent reflections
Radiation source: Enhance (Cu) X-ray Source 2413 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.034
Detector resolution: 10.4922 pixels mm-1 θmax = 70.2°, θmin = 3.0°
φ and ω scans h = −15→14
Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2010) k = −6→5
Tmin = 0.802, Tmax = 0.956 l = −35→35
16657 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.138 w = 1/[σ2(Fo2) + (0.0799P)2 + 0.0677P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
3397 reflections Δρmax = 0.22 e Å3
260 parameters Δρmin = −0.18 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0014 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.23003 (13) 0.0684 (3) −0.05411 (5) 0.0836 (5)
O2 0.33006 (13) 0.5304 (3) 0.23175 (5) 0.0741 (4)
O3 0.22723 (14) 0.8918 (4) 0.21929 (6) 0.0915 (5)
O4 0.20616 (14) 0.6121 (3) 0.27802 (5) 0.0842 (5)
O5 −0.16478 (18) 1.1179 (6) 0.38600 (9) 0.1471 (10)
O6 −0.0422 (2) 1.3762 (6) 0.40406 (10) 0.1530 (11)
N1 0.59607 (13) 0.6072 (4) 0.08575 (6) 0.0646 (5)
H1 0.6490 (19) 0.708 (5) 0.0772 (8) 0.078*
C2 0.55303 (17) 0.4095 (4) 0.05894 (7) 0.0639 (5)
H2 0.5788 0.3603 0.0306 0.077*
C3 0.46756 (15) 0.2941 (4) 0.07904 (6) 0.0567 (5)
C4 0.38506 (14) 0.4030 (4) 0.15764 (6) 0.0548 (4)
H4 0.3320 0.2725 0.1570 0.066*
C5 0.39637 (15) 0.5732 (4) 0.19355 (6) 0.0589 (5)
C6 0.47530 (17) 0.7688 (4) 0.19661 (6) 0.0664 (5)
H6 0.4795 0.8803 0.2220 0.080*
C7 0.54735 (16) 0.7973 (4) 0.16196 (7) 0.0651 (5)
H7 0.6010 0.9264 0.1635 0.078*
C8 0.53720 (14) 0.6267 (4) 0.12471 (6) 0.0545 (4)
C9 0.45587 (14) 0.4308 (3) 0.12168 (6) 0.0516 (4)
C10 0.39484 (17) 0.0829 (4) 0.05951 (7) 0.0687 (5)
H10A 0.4337 −0.0181 0.0371 0.082*
H10B 0.3756 −0.0369 0.0839 0.082*
C11 0.2944 (2) 0.1911 (5) 0.03725 (8) 0.0799 (6)
H11A 0.2584 0.3023 0.0591 0.096*
H11B 0.3137 0.3018 0.0116 0.096*
N12 0.21938 (17) −0.0102 (4) 0.02072 (6) 0.0786 (6)
H12 0.193 (2) −0.092 (6) 0.0395 (9) 0.094*
C13 0.19251 (15) −0.0581 (4) −0.02296 (7) 0.0610 (5)
C14 0.1130 (2) −0.2769 (5) −0.03169 (8) 0.0854 (7)
H14A 0.0931 −0.3526 −0.0030 0.128*
H14B 0.1451 −0.4107 −0.0502 0.128*
H14C 0.0497 −0.2079 −0.0475 0.128*
C15 0.25425 (16) 0.7027 (4) 0.24022 (6) 0.0622 (5)
C16 0.13438 (17) 0.7780 (4) 0.30026 (6) 0.0651 (5)
C19 −0.00262 (16) 1.0523 (4) 0.35211 (6) 0.0634 (5)
C17 0.17387 (18) 0.9802 (5) 0.32675 (8) 0.0799 (6)
H17 0.2471 1.0224 0.3268 0.096*
C18 0.10491 (17) 1.1217 (5) 0.35341 (8) 0.0755 (6)
H18 0.1303 1.2604 0.3718 0.091*
C20 −0.04309 (17) 0.8522 (5) 0.32501 (7) 0.0733 (6)
H20 −0.1164 0.8112 0.3246 0.088*
C21 0.02650 (19) 0.7129 (5) 0.29846 (7) 0.0746 (6)
H21 0.0010 0.5767 0.2796 0.090*
N22 −0.07505 (16) 1.1922 (5) 0.38248 (7) 0.0800 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0793 (10) 0.0984 (12) 0.0736 (9) −0.0193 (9) 0.0110 (8) 0.0123 (8)
O2 0.0842 (10) 0.0792 (10) 0.0602 (8) 0.0241 (8) 0.0195 (7) 0.0118 (7)
O3 0.0920 (12) 0.0983 (12) 0.0861 (10) 0.0374 (10) 0.0293 (9) 0.0307 (9)
O4 0.1024 (12) 0.0781 (10) 0.0746 (9) 0.0228 (9) 0.0374 (8) 0.0140 (8)
O5 0.0776 (13) 0.193 (3) 0.174 (2) −0.0145 (15) 0.0503 (14) −0.065 (2)
O6 0.1153 (18) 0.178 (2) 0.168 (2) −0.0113 (17) 0.0420 (15) −0.102 (2)
N1 0.0525 (9) 0.0721 (11) 0.0699 (10) −0.0088 (8) 0.0111 (8) 0.0046 (8)
C2 0.0630 (11) 0.0703 (12) 0.0592 (10) 0.0014 (10) 0.0122 (9) −0.0020 (9)
C3 0.0562 (10) 0.0567 (10) 0.0576 (10) 0.0025 (8) 0.0050 (8) −0.0009 (8)
C4 0.0488 (9) 0.0544 (10) 0.0612 (10) 0.0031 (8) 0.0038 (8) 0.0063 (8)
C5 0.0579 (11) 0.0652 (12) 0.0540 (9) 0.0131 (9) 0.0062 (8) 0.0061 (9)
C6 0.0728 (13) 0.0678 (13) 0.0580 (10) 0.0089 (10) −0.0057 (10) −0.0093 (9)
C7 0.0572 (11) 0.0632 (12) 0.0740 (12) −0.0049 (9) −0.0084 (9) −0.0039 (10)
C8 0.0457 (9) 0.0583 (11) 0.0595 (10) 0.0013 (8) 0.0006 (8) 0.0045 (8)
C9 0.0481 (9) 0.0506 (10) 0.0561 (9) 0.0035 (7) 0.0009 (7) 0.0053 (8)
C10 0.0713 (13) 0.0622 (12) 0.0725 (12) −0.0021 (10) 0.0037 (10) −0.0093 (10)
C11 0.0842 (15) 0.0723 (14) 0.0817 (13) −0.0159 (12) −0.0164 (12) 0.0089 (12)
N12 0.0816 (13) 0.0863 (13) 0.0676 (11) −0.0300 (10) −0.0025 (9) 0.0143 (10)
C13 0.0520 (10) 0.0632 (12) 0.0683 (12) −0.0015 (9) 0.0056 (9) 0.0048 (9)
C14 0.0823 (15) 0.0786 (15) 0.0941 (16) −0.0193 (12) −0.0118 (13) 0.0035 (13)
C15 0.0627 (12) 0.0681 (12) 0.0561 (10) 0.0062 (10) 0.0077 (9) 0.0027 (10)
C16 0.0730 (13) 0.0677 (12) 0.0556 (10) 0.0080 (10) 0.0150 (9) 0.0057 (9)
C19 0.0586 (11) 0.0780 (13) 0.0541 (10) 0.0041 (10) 0.0086 (8) 0.0017 (9)
C17 0.0549 (12) 0.0915 (16) 0.0941 (15) −0.0066 (11) 0.0153 (11) −0.0101 (14)
C18 0.0642 (13) 0.0838 (15) 0.0788 (13) −0.0071 (11) 0.0077 (10) −0.0170 (12)
C20 0.0568 (12) 0.0888 (15) 0.0744 (12) −0.0066 (11) 0.0018 (10) −0.0064 (12)
C21 0.0761 (14) 0.0806 (14) 0.0668 (12) −0.0041 (12) −0.0020 (11) −0.0101 (11)
N22 0.0657 (12) 0.1020 (15) 0.0731 (11) 0.0047 (10) 0.0143 (9) −0.0058 (11)

Geometric parameters (Å, º)

O1—C13 1.216 (2) C10—C11 1.485 (3)
O2—C15 1.309 (2) C10—H10A 0.9700
O2—C5 1.423 (2) C10—H10B 0.9700
O3—C15 1.176 (2) C11—N12 1.447 (3)
O4—C15 1.351 (2) C11—H11A 0.9700
O4—C16 1.397 (2) C11—H11B 0.9700
O5—N22 1.180 (3) N12—C13 1.327 (3)
O6—N22 1.186 (3) N12—H12 0.77 (3)
N1—C2 1.365 (3) C13—C14 1.496 (3)
N1—C8 1.375 (2) C14—H14A 0.9600
N1—H1 0.87 (2) C14—H14B 0.9600
C2—C3 1.359 (3) C14—H14C 0.9600
C2—H2 0.9300 C16—C17 1.361 (3)
C3—C9 1.434 (3) C16—C21 1.373 (3)
C3—C10 1.495 (3) C19—C20 1.367 (3)
C4—C5 1.358 (3) C19—C18 1.375 (3)
C4—C9 1.397 (3) C19—N22 1.464 (3)
C4—H4 0.9300 C17—C18 1.375 (3)
C5—C6 1.390 (3) C17—H17 0.9300
C6—C7 1.378 (3) C18—H18 0.9300
C6—H6 0.9300 C20—C21 1.372 (3)
C7—C8 1.389 (3) C20—H20 0.9300
C7—H7 0.9300 C21—H21 0.9300
C8—C9 1.412 (3)
C15—O2—C5 118.89 (15) C10—C11—H11B 108.8
C15—O4—C16 118.74 (16) H11A—C11—H11B 107.7
C2—N1—C8 108.58 (16) C13—N12—C11 125.66 (19)
C2—N1—H1 122.9 (15) C13—N12—H12 119 (2)
C8—N1—H1 128.3 (15) C11—N12—H12 115 (2)
C3—C2—N1 111.14 (17) O1—C13—N12 122.12 (19)
C3—C2—H2 124.4 O1—C13—C14 121.85 (19)
N1—C2—H2 124.4 N12—C13—C14 116.02 (19)
C2—C3—C9 105.76 (16) C13—C14—H14A 109.5
C2—C3—C10 127.51 (18) C13—C14—H14B 109.5
C9—C3—C10 126.58 (17) H14A—C14—H14B 109.5
C5—C4—C9 117.69 (17) C13—C14—H14C 109.5
C5—C4—H4 121.2 H14A—C14—H14C 109.5
C9—C4—H4 121.2 H14B—C14—H14C 109.5
C4—C5—C6 123.53 (18) O3—C15—O2 129.37 (19)
C4—C5—O2 117.43 (18) O3—C15—O4 125.00 (19)
C6—C5—O2 118.76 (17) O2—C15—O4 105.54 (17)
C7—C6—C5 119.90 (18) C17—C16—C21 122.0 (2)
C7—C6—H6 120.0 C17—C16—O4 119.5 (2)
C5—C6—H6 120.0 C21—C16—O4 118.1 (2)
C6—C7—C8 117.76 (18) C20—C19—C18 122.57 (19)
C6—C7—H7 121.1 C20—C19—N22 119.18 (19)
C8—C7—H7 121.1 C18—C19—N22 118.21 (19)
N1—C8—C7 130.94 (18) C16—C17—C18 119.6 (2)
N1—C8—C9 107.17 (16) C16—C17—H17 120.2
C7—C8—C9 121.89 (17) C18—C17—H17 120.2
C4—C9—C8 119.21 (16) C19—C18—C17 118.1 (2)
C4—C9—C3 133.44 (17) C19—C18—H18 121.0
C8—C9—C3 107.35 (16) C17—C18—H18 121.0
C11—C10—C3 112.69 (18) C19—C20—C21 118.8 (2)
C11—C10—H10A 109.1 C19—C20—H20 120.6
C3—C10—H10A 109.1 C21—C20—H20 120.6
C11—C10—H10B 109.1 C20—C21—C16 119.0 (2)
C3—C10—H10B 109.1 C20—C21—H21 120.5
H10A—C10—H10B 107.8 C16—C21—H21 120.5
N12—C11—C10 113.74 (19) O5—N22—O6 120.6 (2)
N12—C11—H11A 108.8 O5—N22—C19 119.8 (2)
C10—C11—H11A 108.8 O6—N22—C19 119.6 (2)
N12—C11—H11B 108.8
C8—N1—C2—C3 −0.6 (2) C9—C3—C10—C11 79.3 (3)
N1—C2—C3—C9 0.2 (2) C3—C10—C11—N12 −176.18 (19)
N1—C2—C3—C10 175.94 (18) C10—C11—N12—C13 −113.3 (3)
C9—C4—C5—C6 −1.1 (3) C11—N12—C13—O1 −0.1 (4)
C9—C4—C5—O2 −174.95 (15) C11—N12—C13—C14 −180.0 (2)
C15—O2—C5—C4 −111.9 (2) C5—O2—C15—O3 3.7 (3)
C15—O2—C5—C6 74.0 (2) C5—O2—C15—O4 −179.55 (17)
C4—C5—C6—C7 0.0 (3) C16—O4—C15—O3 −14.3 (3)
O2—C5—C6—C7 173.75 (17) C16—O4—C15—O2 168.83 (18)
C5—C6—C7—C8 0.4 (3) C15—O4—C16—C17 −75.7 (3)
C2—N1—C8—C7 −179.0 (2) C15—O4—C16—C21 111.2 (2)
C2—N1—C8—C9 0.7 (2) C21—C16—C17—C18 1.4 (4)
C6—C7—C8—N1 −179.87 (19) O4—C16—C17—C18 −171.5 (2)
C6—C7—C8—C9 0.4 (3) C20—C19—C18—C17 −1.0 (4)
C5—C4—C9—C8 1.8 (2) N22—C19—C18—C17 176.4 (2)
C5—C4—C9—C3 −179.15 (19) C16—C17—C18—C19 −0.1 (4)
N1—C8—C9—C4 178.68 (16) C18—C19—C20—C21 0.8 (3)
C7—C8—C9—C4 −1.6 (3) N22—C19—C20—C21 −176.6 (2)
N1—C8—C9—C3 −0.6 (2) C19—C20—C21—C16 0.5 (3)
C7—C8—C9—C3 179.20 (17) C17—C16—C21—C20 −1.5 (3)
C2—C3—C9—C4 −178.88 (19) O4—C16—C21—C20 171.38 (19)
C10—C3—C9—C4 5.4 (3) C20—C19—N22—O5 6.0 (4)
C2—C3—C9—C8 0.2 (2) C18—C19—N22—O5 −171.5 (3)
C10—C3—C9—C8 −175.54 (18) C20—C19—N22—O6 −175.5 (3)
C2—C3—C10—C11 −95.5 (3) C18—C19—N22—O6 7.0 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.87 (2) 2.01 (2) 2.882 (2) 177 (2)
N12—H12···O6ii 0.77 (3) 2.54 (3) 3.207 (3) 147 (3)

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, y−3/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5522).

References

  1. Freer, R. & McKillop, A. (1996). Synth. Commun 26, 331–350.
  2. Gray, C. J., Ireson, J. C. & Parker, R. C. (1977). Tetrahedron, 33, 739–743.
  3. Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  6. Um, I.-H., Kim, E. Y., Park, H.-R. & Jeon, S.-E. (2006). J. Org. Chem. 71, 2302–2306. [DOI] [PubMed]
  7. Um, I.-H., Yoon, S., Park, H.-R. & Han, H.-J. (2008). Org. Biomol. Chem. 6, 1618–1624. [DOI] [PubMed]
  8. Zawadzka, A., Łozińska, I., Molęda, Z., Panasiewicz, M. & Czarnocki, Z. (2012). J. Pineal Res. doi:10.1111/jpi.12006. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812038238/lh5522sup1.cif

e-68-o2915-sup1.cif (20.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812038238/lh5522Isup2.hkl

e-68-o2915-Isup2.hkl (166.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812038238/lh5522Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES