Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Sep 15;68(Pt 10):o2930–o2931. doi: 10.1107/S1600536812038779

4-(2,3-Dimethyl­anilino)pent-3-en-2-one

Gertruida J S Venter a,*, Gideon Steyl a, Andreas Roodt a
PMCID: PMC3470305  PMID: 23125718

Abstract

In the title compound, C13H17NO, the dihedral angle between the aryl ring and the amino­acryl­aldehyde mean plane [N—C=C—C=O; maximum deviation = 0.0144 (9) Å] is 53.43 (4)°. There is an intra­molecular N—H⋯O hydrogen bond involving the amine and carbonyl groups. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming chains propagating along [001].

Related literature  

For background to the synthesis of the title compound, see: Shaheen et al. (2006); Venter et al. (2010). For applications of rhodium compounds containing bidentate ligand systems, see: Pyżuk et al. (1993); Tan et al. (2008); Xia et al. (2008). For related rhodium enamino­ketonato complexes, see: Brink et al. (2010); Damoense et al. (1994); Roodt & Steyn (2000); Venter et al. (2009a ,b ; 2012).graphic file with name e-68-o2930-scheme1.jpg

Experimental  

Crystal data  

  • C13H17NO

  • M r = 203.28

  • Monoclinic, Inline graphic

  • a = 7.526 (3) Å

  • b = 12.450 (5) Å

  • c = 12.040 (4) Å

  • β = 90.243 (4)°

  • V = 1128.1 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.18 × 0.16 × 0.08 mm

Data collection  

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.987, T max = 0.994

  • 20265 measured reflections

  • 2817 independent reflections

  • 2528 reflections with I > 2σ(I)

  • R int = 0.024

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.103

  • S = 1.05

  • 2817 reflections

  • 144 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus; program(s) used to solve structure: SIR92 (Altomare et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812038779/su2465sup1.cif

e-68-o2930-sup1.cif (19.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812038779/su2465Isup2.hkl

e-68-o2930-Isup2.hkl (135.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812038779/su2465Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.911 (15) 1.869 (15) 2.6348 (13) 140.2 (13)
C1—H1A⋯O1i 0.98 2.49 3.4599 (15) 173

Symmetry code: (i) Inline graphic.

Acknowledgments

Dr Tania Hill is thanked for the XRD data collection. Financial assistance from the University of the Free State Strategic Academic Cluster Initiative, SASOL, the South African National Research Foundation (SA-NRF/THRIP) and the Inkaba yeAfrika Research Initiative is gratefully acknowledged. Part of this material is based on work supported by the SA-NRF/THRIP under grant No. GUN 2068915. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the SA-NRF.

supplementary crystallographic information

Comment

The β-diketone compound AcacH (acetylacetone; or when coordinated acetylacetonato, acac-) has been studied extensively, with a multitude of derivatives synthesized to date. One such derivative type, known as enaminoketones, containing N and O atoms as well as an unsaturated C═C bond, and are of interest in various fields including liquid crystals (Pyżuk et al., 1993) and fluorescence studies (Xia et al., 2008). They also have significant application possibilities in medicine (Tan et al., 2008)] and catalysis (Roodt & Steyn, 2000; Brink et al., 2010).

The title compound (Fig. 1) is an enaminoketone derivative of 4-(phenylamino)pent-3-en-2-one (Shaheen et al., 2006). Bond distances in the the title compound differ significantly from those in compounds where the ligand is coordinated to rhodium (Venter et al., 2009a,b; 2012); Damoense et al., 1994), but it share characteristics with other enaminoketones of this type (Venter et al., 2010). The C2–C3 bond distance of 1.3849 (14) Å versus the C3–C4 distance of 1.4251 (13) Å indicates an unsaturated bond in the pentenone backbone. Here the intramolecular distance N1···O1 is 2.6348 (13) Å which is considerably less (~ 0.2 Å) than that observed when the ligand is coordinated to rhodium for example (Venter et al., 2009a,b; 2012; Damoense et al., 1994).

The intramolecular N-H···O hydrogen bond that is formed (Fig. 1 and Table 1) enhances the planarity of the aminopentenone moiety. The aminoacrylaldehyde mean plane [N1-C2═C3-C4═O1; maximum deviation = 0.0144 (9) Å] makes a dihedral angle of 53.43 (4)° with the C11-C16 benzene ring. This angle is dependent on the position of the substituents on the aromatic ring. Compounds with substituents in the ortho positions result in larger dihedral angles, while smaller angles are found for derivatives with substituents in the para position (Venter et al., 2009a,b; 2012).

In the crystal, there are C-H···O hydrogen bonds leading to the formation of chains propagating along [001] (Table 1 and Fig. 2).

Experimental

The title compound was prepared following the literature procedure (Shaheen et al., 2006; Venter et al., 2010).

Refinement

The NH H atom was located in a difference Fourier map and freely refined. The H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms: C—H = 0.95 and 0.98 Å for CH and CH3 H atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.5 for CH3 H atoms and = 1.2 for other H atoms. The methyl groups were generated to fit the difference electron density and the groups were then refined as rigid rotors.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom numbering. the displacement ellipsoids are drawn at the 50% probability displacement level. The intramolecular N—H···O hydrogen bond is shown as a yellow dashed line (see Table 1 for details).

Crystal data

C13H17NO F(000) = 440
Mr = 203.28 Dx = 1.197 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9978 reflections
a = 7.526 (3) Å θ = 2.7–28.4°
b = 12.450 (5) Å µ = 0.08 mm1
c = 12.040 (4) Å T = 100 K
β = 90.243 (4)° Cuboid, colourless
V = 1128.1 (7) Å3 0.18 × 0.16 × 0.08 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 2817 independent reflections
Radiation source: fine-focus sealed tube 2528 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.024
phi and ω scans θmax = 28.4°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −9→10
Tmin = 0.987, Tmax = 0.994 k = −16→16
20265 measured reflections l = −15→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0535P)2 + 0.3712P] where P = (Fo2 + 2Fc2)/3
2817 reflections (Δ/σ)max < 0.001
144 parameters Δρmax = 0.33 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.06673 (13) 0.30089 (8) 0.27466 (8) 0.0206 (2)
H1A 0.1442 0.3069 0.34 0.031*
H1B −0.0323 0.2525 0.2913 0.031*
H1C 0.0202 0.372 0.2552 0.031*
C2 0.17093 (11) 0.25693 (7) 0.17890 (7) 0.01569 (19)
C3 0.15832 (12) 0.14919 (7) 0.15135 (7) 0.01678 (19)
H3 0.083 0.1047 0.1946 0.02*
C4 0.25242 (12) 0.10152 (7) 0.06148 (7) 0.01660 (19)
C5 0.23616 (14) −0.01799 (8) 0.04301 (9) 0.0233 (2)
H5A 0.1841 −0.0315 −0.0304 0.035*
H5B 0.1597 −0.0491 0.1003 0.035*
H5C 0.3542 −0.051 0.0472 0.035*
C11 0.29955 (12) 0.43578 (7) 0.13435 (7) 0.01577 (19)
C12 0.27101 (11) 0.50391 (7) 0.04322 (7) 0.01532 (19)
C13 0.30377 (12) 0.61452 (7) 0.05608 (8) 0.01670 (19)
C14 0.36216 (12) 0.65366 (8) 0.15862 (8) 0.0192 (2)
H14 0.385 0.7283 0.167 0.023*
C15 0.38734 (12) 0.58538 (8) 0.24843 (8) 0.0199 (2)
H15 0.4246 0.6136 0.318 0.024*
C16 0.35811 (13) 0.47587 (8) 0.23660 (8) 0.0185 (2)
H16 0.3777 0.4286 0.2974 0.022*
C17 0.20554 (13) 0.46041 (8) −0.06639 (8) 0.0190 (2)
H17A 0.3054 0.4546 −0.118 0.028*
H17B 0.1158 0.5091 −0.0974 0.028*
H17C 0.1529 0.3893 −0.055 0.028*
C18 0.27215 (14) 0.69111 (8) −0.03884 (9) 0.0223 (2)
H18A 0.1441 0.6989 −0.0515 0.034*
H18B 0.3282 0.6629 −0.1061 0.034*
H18C 0.3235 0.7613 −0.0206 0.034*
N1 0.27422 (11) 0.32320 (6) 0.11920 (7) 0.01722 (18)
O1 0.35012 (9) 0.15398 (5) −0.00317 (6) 0.01903 (16)
H1 0.3236 (19) 0.2906 (12) 0.0590 (12) 0.033 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0210 (4) 0.0217 (5) 0.0193 (4) −0.0008 (4) 0.0040 (3) −0.0023 (3)
C2 0.0148 (4) 0.0177 (4) 0.0146 (4) 0.0006 (3) −0.0018 (3) 0.0005 (3)
C3 0.0176 (4) 0.0159 (4) 0.0169 (4) −0.0007 (3) 0.0001 (3) 0.0017 (3)
C4 0.0167 (4) 0.0155 (4) 0.0176 (4) 0.0002 (3) −0.0033 (3) 0.0006 (3)
C5 0.0264 (5) 0.0150 (4) 0.0285 (5) −0.0019 (4) 0.0046 (4) −0.0016 (4)
C11 0.0155 (4) 0.0138 (4) 0.0181 (4) 0.0003 (3) 0.0018 (3) −0.0018 (3)
C12 0.0125 (4) 0.0166 (4) 0.0168 (4) 0.0006 (3) 0.0009 (3) −0.0014 (3)
C13 0.0135 (4) 0.0154 (4) 0.0212 (4) 0.0012 (3) 0.0011 (3) 0.0002 (3)
C14 0.0166 (4) 0.0153 (4) 0.0258 (5) 0.0000 (3) 0.0005 (3) −0.0041 (3)
C15 0.0183 (4) 0.0221 (5) 0.0192 (4) 0.0002 (3) −0.0010 (3) −0.0063 (4)
C16 0.0190 (4) 0.0197 (4) 0.0170 (4) 0.0009 (3) −0.0003 (3) −0.0005 (3)
C17 0.0207 (4) 0.0194 (4) 0.0168 (4) −0.0008 (3) −0.0012 (3) −0.0009 (3)
C18 0.0227 (5) 0.0171 (4) 0.0272 (5) 0.0002 (4) −0.0018 (4) 0.0039 (4)
N1 0.0209 (4) 0.0139 (4) 0.0169 (4) −0.0001 (3) 0.0031 (3) −0.0015 (3)
O1 0.0223 (3) 0.0165 (3) 0.0183 (3) −0.0011 (3) 0.0025 (3) −0.0004 (2)

Geometric parameters (Å, º)

C1—C2 1.5005 (13) C12—C13 1.4074 (14)
C1—H1A 0.98 C12—C17 1.5074 (13)
C1—H1B 0.98 C13—C14 1.3964 (14)
C1—H1C 0.98 C13—C18 1.5066 (14)
C2—N1 1.3441 (12) C14—C15 1.3878 (14)
C2—C3 1.3849 (14) C14—H14 0.95
C3—C4 1.4251 (13) C15—C16 1.3883 (14)
C3—H3 0.95 C15—H15 0.95
C4—O1 1.2562 (12) C16—H16 0.95
C4—C5 1.5093 (14) C17—H17A 0.98
C5—H5A 0.98 C17—H17B 0.98
C5—H5B 0.98 C17—H17C 0.98
C5—H5C 0.98 C18—H18A 0.98
C11—C16 1.3979 (13) C18—H18B 0.98
C11—C12 1.4027 (13) C18—H18C 0.98
C11—N1 1.4262 (13) N1—H1 0.911 (15)
C2—C1—H1A 109.5 C14—C13—C12 119.54 (8)
C2—C1—H1B 109.5 C14—C13—C18 119.86 (9)
H1A—C1—H1B 109.5 C12—C13—C18 120.58 (9)
C2—C1—H1C 109.5 C15—C14—C13 121.10 (9)
H1A—C1—H1C 109.5 C15—C14—H14 119.4
H1B—C1—H1C 109.5 C13—C14—H14 119.5
N1—C2—C3 120.37 (8) C14—C15—C16 120.03 (9)
N1—C2—C1 119.50 (8) C14—C15—H15 120
C3—C2—C1 120.12 (8) C16—C15—H15 120
C2—C3—C4 123.46 (8) C15—C16—C11 119.35 (9)
C2—C3—H3 118.3 C15—C16—H16 120.3
C4—C3—H3 118.3 C11—C16—H16 120.3
O1—C4—C3 123.23 (9) C12—C17—H17A 109.5
O1—C4—C5 117.94 (8) C12—C17—H17B 109.5
C3—C4—C5 118.82 (8) H17A—C17—H17B 109.5
C4—C5—H5A 109.5 C12—C17—H17C 109.5
C4—C5—H5B 109.5 H17A—C17—H17C 109.5
H5A—C5—H5B 109.5 H17B—C17—H17C 109.5
C4—C5—H5C 109.5 C13—C18—H18A 109.5
H5A—C5—H5C 109.5 C13—C18—H18B 109.5
H5B—C5—H5C 109.5 H18A—C18—H18B 109.5
C16—C11—C12 121.31 (9) C13—C18—H18C 109.5
C16—C11—N1 120.33 (8) H18A—C18—H18C 109.5
C12—C11—N1 118.32 (8) H18B—C18—H18C 109.5
C11—C12—C13 118.65 (9) C2—N1—C11 127.75 (8)
C11—C12—C17 121.06 (8) C2—N1—H1 113.0 (9)
C13—C12—C17 120.29 (8) C11—N1—H1 119.0 (9)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1 0.911 (15) 1.869 (15) 2.6348 (13) 140.2 (13)
C1—H1A···O1i 0.98 2.49 3.4599 (15) 173

Symmetry code: (i) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2465).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1992). SIR92 University of Bari, Italy.
  2. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Brink, A., Visser, H. G., Steyl, G. & Roodt, A. (2010). Dalton Trans. 39, 5572–5578. [DOI] [PubMed]
  4. Bruker (2004). SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Damoense, L. J., Purcell, W., Roodt, A. & Leipoldt, J. G. (1994). Rhodium Express, 5, 10–13.
  7. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  8. Pyżuk, W., Krówczynsk, A. & Górecka, E. (1993). Mol. Cryst. Liq. Cryst. 237, 75–84.
  9. Roodt, A. & Steyn, G. J. J. (2000). Recent Research Developments in Inorganic Chemistry. Vol. 2, pp. 1–23. Trivandrum, India: Transworld Research Network.
  10. Shaheen, F., Marchio, L., Badshah, A. & Khosa, M. K. (2006). Acta Cryst. E62, o873–o874.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Tan, H. Y., Loke, W. K., Tan, Y. T. & Nguyen, N.-T. (2008). Lab Chip, 8, 885–891. [DOI] [PubMed]
  13. Venter, G. J. S., Steyl, G. & Roodt, A. (2009a). Acta Cryst. E65, m1321–m1322. [DOI] [PMC free article] [PubMed]
  14. Venter, G. J. S., Steyl, G. & Roodt, A. (2009b). Acta Cryst. E65, m1606–m1607. [DOI] [PMC free article] [PubMed]
  15. Venter, G. J. S., Steyl, G. & Roodt, A. (2010). Acta Cryst. E66, o3011–o3012. [DOI] [PMC free article] [PubMed]
  16. Venter, G. J. S., Steyl, G. & Roodt, A. (2012). Acta Cryst. E68, m666–m667. [DOI] [PMC free article] [PubMed]
  17. Xia, M., Wu, B. & Xiang, G. (2008). J. Fluor. Chem. 129, 402–408.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812038779/su2465sup1.cif

e-68-o2930-sup1.cif (19.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812038779/su2465Isup2.hkl

e-68-o2930-Isup2.hkl (135.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812038779/su2465Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES