Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Sep 15;68(Pt 10):o2941. doi: 10.1107/S1600536812038834

1-(5-Amino-2,4-dinitro­phen­yl)pyridinium chloride monohydrate

Rajamanickam Babykala a, Doraisamyraja Kalaivani a,*
PMCID: PMC3470313  PMID: 23125726

Abstract

In the cation of the title hydrated salt, C11H9N4O4 +·Cl·H2O, the six-membered rings are inclined to each other at 79.0 (1)° and an intra­molecular N—H⋯O hydrogen bond occurs. In the crystal, N—H⋯Cl hydrogen bonds link two cations and two anions into centrosymmetric group, and O—H⋯Cl hydrogen bonds involving the water mol­ecules further link these groups into chains in [101]. An O—H⋯O inter­action is also present. The water mol­ecule is disordered over two sets of sites in a 0.555 (13):0.445 (13) ratio

Related literature  

For applications of N-substituted pyridinium salts, see: Sliwa (1996); Ali et al. (2005); Chelossi et al. (2006); Azzouz et al. (2008). For related structures, see: Shmidt et al. (2005); Wojtas et al. (2006); Manickkam & Kalaivani (2011); Chernyshev et al. (2011); Sridevi & Kalaivani (2012).graphic file with name e-68-o2941-scheme1.jpg

Experimental  

Crystal data  

  • C11H9N4O4 +·Cl·H2O

  • M r = 314.69

  • Monoclinic, Inline graphic

  • a = 5.4312 (4) Å

  • b = 21.493 (2) Å

  • c = 11.3892 (9) Å

  • β = 92.362 (3)°

  • V = 1328.33 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.871, T max = 0.939

  • 14754 measured reflections

  • 3125 independent reflections

  • 2288 reflections with I > 2σ(I)

  • R int = 0.031

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.112

  • S = 1.03

  • 3125 reflections

  • 224 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812038834/cv5319sup1.cif

e-68-o2941-sup1.cif (22.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812038834/cv5319Isup2.hkl

e-68-o2941-Isup2.hkl (153.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812038834/cv5319Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O4 0.86 (2) 2.09 (2) 2.671 (2) 124 (2)
N4—H4B⋯Cl1 0.87 (2) 2.35 (2) 3.2162 (19) 171 (2)
N4—H4A⋯Cl1i 0.86 (2) 2.56 (2) 3.2268 (16) 135 (2)
O5—H5B⋯Cl1 0.90 (2) 2.34 (3) 3.187 (3) 158 (5)
O5—H5A⋯Cl1ii 0.93 (2) 2.51 (2) 3.429 (9) 169 (5)
O5′—H5D⋯O5iii 0.91 (2) 1.94 (3) 2.815 (16) 160 (5)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors are thankful to SAIF, IIT Madras, for the data collection.

supplementary crystallographic information

Comment

N-Substitued pyridinium salts are widely used in organic synthesis (Azzouz et al., 2008), medicinal field (Chelossi et al., 2006), electrodeposition (Ali et al., 2005) and dye preparations (Sliwa, 1996). As a continuation of our studies of new substituted pyridinium barbiturates (Manickkam & Kalaivani, 2011; Sridevi & Kalaivani, 2012), we report the crystal structure of the title compound, (I).

In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those observed in the related compounds (Shmidt et al., 2005; Wojtas et al., 2006; Chernyshev et al., 2011). In the cation, the pyridine ring is twisted notably from the dinitrophenyl ring and the dihedral angle between their planes is 78.93 (5)°. The two nitro groups, O1—N2—O2 and O3—N3—O4, deviate from the benzene ring at 7.97 (10)° and 4.18 (17)°, respectively. Intermolecular N—H···Cl and O—H···Cl hydrogen bonds (Table 1) consolidate the crystal packing. The overall molecular packing forming a herring bone arrangement when view down c axis is shown in Fig. 2.

Experimental

Analytical grade 1,3-dichloro-4,6-dinitrobenzene (DCDNB) and barbituric acid were used as supplied by Aldrich company. Pyridine was distilled under reduced pressure and the fraction boiling over at its boiling point was used for the preparation of the title molecular salt.DCDNB (2.01 g, 0.01 mol) in 15 ml absolute ethanol was mixed with barbituric acid (1.28 g, 0.01 mol) in 30 ml of absolute ethanol. Pyridine (3.16 g, 0.04 mol)was added to the above mixture which was heated to 40°C and shaken well for 5–6 hrs. The solution was kept as such at room temperature for 48 hrs. On standing dark violet colour crystals separate out.After filtering out these violet crystals, the filterate was kept as such at room temperature (25°C).From the filtrate, one of the by-products of the reaction between DCDNB, barbituric acid and pyridine, separates as pale greenish yellow crystals after 3 months. These crystals were powdered well, and washed with copious amount of ethanol and dry ether, recrystallized from absolute alcohol and subjected to single-crystal X-ray analysis. Yield: 40–50%; m.p.: 508 K.

Refinement

C-bound H atoms were positioned geometrically (C—H 0.93 Å), and refined as riding, with Uiso(H) = 1.2 Ueq(C). N- and O-bound H atoms were located on a difference map, and refined with restraints N—H = 0.88 (2) Å, O—H = 0.92 (2) Å.

Figures

Fig. 1.

Fig. 1.

The content of asymmetric unit of the title compound showing the atomic labelling and 40% probability displacement ellipsoids. Dashed lines denote hydrogen bonds. Only major component of the disordered water molecule is shown.

Fig. 2.

Fig. 2.

A portion of the crystal packing viewed down the c axis and showing the herring bone arrangement of the molecules. Only major components of the disordered water molecules are shown. H atoms were omitted for clarity.

Crystal data

C11H9N4O4+·Cl·H2O F(000) = 648
Mr = 314.69 Dx = 1.574 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4581 reflections
a = 5.4312 (4) Å θ = 2.6–25.4°
b = 21.493 (2) Å µ = 0.32 mm1
c = 11.3892 (9) Å T = 293 K
β = 92.362 (3)° Block, red
V = 1328.33 (19) Å3 0.30 × 0.25 × 0.20 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer 3125 independent reflections
Radiation source: fine-focus sealed tube 2288 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.031
ω and φ scan θmax = 27.9°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −7→6
Tmin = 0.871, Tmax = 0.939 k = −28→28
14754 measured reflections l = −11→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0538P)2 + 0.2604P] where P = (Fo2 + 2Fc2)/3
3125 reflections (Δ/σ)max = 0.001
224 parameters Δρmax = 0.20 e Å3
9 restraints Δρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.3483 (3) 0.66419 (8) 0.10183 (14) 0.0449 (4)
H1 0.4780 0.6878 0.1336 0.054*
C2 0.3105 (3) 0.66065 (9) −0.01760 (15) 0.0531 (4)
H2 0.4149 0.6814 −0.0671 0.064*
C3 0.1174 (4) 0.62626 (9) −0.06342 (15) 0.0563 (5)
H3 0.0871 0.6242 −0.1443 0.068*
C4 −0.0302 (4) 0.59508 (11) 0.01082 (17) 0.0663 (6)
H4 −0.1607 0.5712 −0.0194 0.080*
C5 0.0137 (3) 0.59893 (10) 0.12967 (16) 0.0613 (5)
H5 −0.0855 0.5773 0.1803 0.074*
C6 0.2469 (3) 0.63860 (8) 0.29921 (13) 0.0403 (4)
C7 0.1136 (3) 0.67842 (8) 0.37070 (14) 0.0414 (4)
C8 0.1804 (3) 0.68200 (8) 0.48832 (14) 0.0441 (4)
H8 0.0915 0.7076 0.5370 0.053*
C9 0.3760 (3) 0.64842 (8) 0.53520 (13) 0.0432 (4)
C10 0.5080 (3) 0.60594 (8) 0.46686 (13) 0.0439 (4)
C11 0.4326 (3) 0.60318 (8) 0.34576 (14) 0.0446 (4)
H11 0.5138 0.5761 0.2969 0.054*
N2 −0.0913 (3) 0.71602 (7) 0.32853 (13) 0.0493 (4)
N1 0.1997 (2) 0.63388 (6) 0.17294 (11) 0.0404 (3)
N3 0.4403 (3) 0.65911 (7) 0.65862 (12) 0.0517 (4)
O1 −0.1404 (2) 0.71820 (7) 0.22235 (12) 0.0628 (4)
O2 −0.2092 (3) 0.74376 (8) 0.40064 (13) 0.0787 (5)
O3 0.3182 (3) 0.69609 (7) 0.71230 (11) 0.0676 (4)
O4 0.6154 (3) 0.63139 (8) 0.70329 (11) 0.0740 (4)
N4 0.6928 (3) 0.57003 (8) 0.50422 (14) 0.0560 (4)
O5 0.3996 (12) 0.4960 (2) 0.1460 (6) 0.0653 (17) 0.555 (13)
O5' 0.4978 (12) 0.5075 (2) 0.0942 (7) 0.0622 (16) 0.445 (13)
Cl1 0.88637 (9) 0.47657 (2) 0.30769 (4) 0.06455 (18)
H5A 0.274 (7) 0.487 (3) 0.196 (5) 0.15 (2)* 0.555 (13)
H5B 0.556 (4) 0.494 (4) 0.174 (5) 0.15 (2)* 0.555 (13)
H5C 0.520 (14) 0.481 (3) 0.156 (4) 0.08 (3)* 0.445 (13)
H5D 0.554 (9) 0.499 (3) 0.022 (2) 0.064 (16)* 0.445 (13)
H4A 0.747 (3) 0.5711 (10) 0.5766 (14) 0.063 (6)*
H4B 0.759 (4) 0.5437 (9) 0.4563 (18) 0.071 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0445 (9) 0.0485 (9) 0.0413 (8) −0.0051 (7) −0.0018 (7) 0.0032 (7)
C2 0.0619 (11) 0.0584 (11) 0.0389 (9) −0.0033 (8) 0.0029 (8) 0.0053 (8)
C3 0.0658 (12) 0.0667 (12) 0.0356 (8) 0.0059 (9) −0.0056 (8) 0.0004 (8)
C4 0.0556 (11) 0.0906 (15) 0.0512 (11) −0.0181 (10) −0.0147 (9) −0.0037 (10)
C5 0.0503 (10) 0.0871 (15) 0.0460 (9) −0.0243 (10) −0.0043 (8) 0.0058 (9)
C6 0.0384 (8) 0.0504 (9) 0.0318 (7) −0.0074 (7) −0.0034 (6) 0.0046 (6)
C7 0.0376 (8) 0.0440 (9) 0.0423 (8) −0.0045 (6) −0.0038 (6) 0.0045 (7)
C8 0.0464 (9) 0.0448 (9) 0.0412 (8) −0.0039 (7) 0.0016 (7) 0.0002 (7)
C9 0.0481 (9) 0.0496 (9) 0.0315 (7) −0.0067 (7) −0.0022 (6) 0.0051 (7)
C10 0.0417 (8) 0.0514 (9) 0.0380 (8) −0.0035 (7) −0.0038 (7) 0.0073 (7)
C11 0.0418 (8) 0.0567 (10) 0.0353 (8) 0.0023 (7) −0.0001 (6) 0.0029 (7)
N2 0.0442 (8) 0.0472 (8) 0.0556 (9) −0.0020 (6) −0.0096 (7) 0.0005 (7)
N1 0.0377 (6) 0.0501 (8) 0.0328 (6) −0.0028 (6) −0.0047 (5) 0.0041 (5)
N3 0.0631 (9) 0.0549 (9) 0.0365 (7) −0.0051 (7) −0.0052 (7) 0.0035 (7)
O1 0.0581 (8) 0.0727 (9) 0.0557 (8) 0.0073 (6) −0.0222 (6) −0.0006 (7)
O2 0.0757 (10) 0.0902 (11) 0.0696 (9) 0.0342 (8) −0.0052 (8) −0.0106 (8)
O3 0.0897 (10) 0.0747 (9) 0.0384 (7) 0.0102 (8) 0.0017 (7) −0.0052 (6)
O4 0.0846 (10) 0.0864 (11) 0.0486 (8) 0.0167 (8) −0.0252 (7) −0.0053 (7)
N4 0.0577 (9) 0.0683 (11) 0.0409 (8) 0.0125 (8) −0.0111 (7) 0.0022 (8)
O5 0.066 (3) 0.075 (2) 0.054 (3) 0.0075 (19) −0.014 (2) −0.0065 (17)
O5' 0.057 (3) 0.079 (2) 0.050 (3) 0.0092 (19) 0.001 (2) 0.002 (2)
Cl1 0.0775 (3) 0.0563 (3) 0.0576 (3) 0.0081 (2) −0.0250 (2) 0.0010 (2)

Geometric parameters (Å, º)

C1—N1 1.336 (2) C8—H8 0.9300
C1—C2 1.369 (2) C9—C10 1.414 (2)
C1—H1 0.9300 C9—N3 1.4528 (19)
C2—C3 1.369 (3) C10—N4 1.323 (2)
C2—H2 0.9300 C10—C11 1.424 (2)
C3—C4 1.365 (3) C11—H11 0.9300
C3—H3 0.9300 N2—O2 1.2176 (19)
C4—C5 1.367 (3) N2—O1 1.2285 (18)
C4—H4 0.9300 N3—O4 1.2158 (19)
C5—N1 1.336 (2) N3—O3 1.216 (2)
C5—H5 0.9300 N4—H4A 0.864 (15)
C6—C11 1.354 (2) N4—H4B 0.874 (16)
C6—C7 1.403 (2) O5—H5A 0.930 (19)
C6—N1 1.4540 (19) O5—H5B 0.90 (2)
C7—C8 1.375 (2) O5'—H5C 0.916 (19)
C7—N2 1.442 (2) O5'—H5D 0.913 (19)
C8—C9 1.374 (2)
N1—C1—C2 120.36 (15) C8—C9—C10 121.78 (14)
N1—C1—H1 119.8 C8—C9—N3 116.37 (15)
C2—C1—H1 119.8 C10—C9—N3 121.85 (14)
C3—C2—C1 119.33 (16) N4—C10—C9 126.50 (15)
C3—C2—H2 120.3 N4—C10—C11 118.14 (16)
C1—C2—H2 120.3 C9—C10—C11 115.35 (14)
C4—C3—C2 119.29 (16) C6—C11—C10 122.40 (16)
C4—C3—H3 120.4 C6—C11—H11 118.8
C2—C3—H3 120.4 C10—C11—H11 118.8
C3—C4—C5 120.05 (18) O2—N2—O1 123.14 (15)
C3—C4—H4 120.0 O2—N2—C7 118.02 (14)
C5—C4—H4 120.0 O1—N2—C7 118.83 (15)
N1—C5—C4 119.83 (17) C1—N1—C5 121.11 (14)
N1—C5—H5 120.1 C1—N1—C6 118.62 (13)
C4—C5—H5 120.1 C5—N1—C6 120.26 (13)
C11—C6—C7 120.64 (14) O4—N3—O3 122.92 (14)
C11—C6—N1 116.52 (14) O4—N3—C9 118.69 (15)
C7—C6—N1 122.83 (14) O3—N3—C9 118.39 (15)
C8—C7—C6 118.53 (14) C10—N4—H4A 121.1 (14)
C8—C7—N2 117.52 (15) C10—N4—H4B 120.2 (15)
C6—C7—N2 123.95 (14) H4A—N4—H4B 119 (2)
C9—C8—C7 121.18 (15) H5A—O5—H5B 119 (3)
C9—C8—H8 119.4 H5A—O5—H5C 119 (5)
C7—C8—H8 119.4 H5C—O5'—H5D 122 (4)
N1—C1—C2—C3 0.7 (3) N4—C10—C11—C6 −179.34 (16)
C1—C2—C3—C4 −1.4 (3) C9—C10—C11—C6 −0.2 (2)
C2—C3—C4—C5 0.7 (3) C8—C7—N2—O2 −7.3 (2)
C3—C4—C5—N1 0.8 (3) C6—C7—N2—O2 172.42 (16)
C11—C6—C7—C8 1.9 (2) C8—C7—N2—O1 173.29 (15)
N1—C6—C7—C8 −176.69 (14) C6—C7—N2—O1 −6.9 (2)
C11—C6—C7—N2 −177.90 (15) C2—C1—N1—C5 0.9 (3)
N1—C6—C7—N2 3.5 (2) C2—C1—N1—C6 179.68 (16)
C6—C7—C8—C9 1.2 (2) C4—C5—N1—C1 −1.6 (3)
N2—C7—C8—C9 −178.98 (14) C4—C5—N1—C6 179.61 (18)
C7—C8—C9—C10 −3.9 (2) C11—C6—N1—C1 −78.17 (19)
C7—C8—C9—N3 175.86 (15) C7—C6—N1—C1 100.44 (18)
C8—C9—C10—N4 −177.62 (17) C11—C6—N1—C5 100.64 (19)
N3—C9—C10—N4 2.6 (3) C7—C6—N1—C5 −80.8 (2)
C8—C9—C10—C11 3.3 (2) C8—C9—N3—O4 −178.50 (16)
N3—C9—C10—C11 −176.45 (14) C10—C9—N3—O4 1.3 (2)
C7—C6—C11—C10 −2.4 (2) C8—C9—N3—O3 0.6 (2)
N1—C6—C11—C10 176.28 (14) C10—C9—N3—O3 −179.63 (15)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N4—H4A···O4 0.86 (2) 2.09 (2) 2.671 (2) 124 (2)
N4—H4B···Cl1 0.87 (2) 2.35 (2) 3.2162 (19) 171 (2)
N4—H4A···Cl1i 0.86 (2) 2.56 (2) 3.2268 (16) 135 (2)
O5—H5B···Cl1 0.90 (2) 2.34 (3) 3.187 (3) 158 (5)
O5—H5A···Cl1ii 0.93 (2) 2.51 (2) 3.429 (9) 169 (5)
O5′—H5D···O5iii 0.91 (2) 1.94 (3) 2.815 (16) 160 (5)

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x−1, y, z; (iii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5319).

References

  1. Ali, M. R., Nishikata, A. & Tsuru, T. (2005). Ind. J. Chem. Technol. 12, 648–653.
  2. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  3. Azzouz, R., Fruit, C., Bischoff, L. & Marsais, F. (2008). J. Org. Chem. 73, 1154–1157. [DOI] [PubMed]
  4. Bruker (2004). APEX2, SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Chelossi, E., Mancini, I., Sepcic, K., Turk, T. & Faimali, M. (2006). Biomol. Eng. 23, 317–323. [DOI] [PubMed]
  6. Chernyshev, V. M., Tarasova, E. V., Chernysheva, A. V. & Rybakov, V. B. (2011). Acta Cryst. E67, o466–o467. [DOI] [PMC free article] [PubMed]
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  9. Manickkam, V. & Kalaivani, D. (2011). Acta Cryst. E67, o3475. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Shmidt, A., Mordhorst, N. & Nieger, M. (2005). Nat. Prod. Res. 19, 541–546. [DOI] [PubMed]
  12. Sliwa, W. (1996). In N-Substituted Salts of Pyridine and Related Compounds, Synthesis, Properties, Applications. Czestochowa, Poland: Academic Press.
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Sridevi, G. & Kalaivani, D. (2012). Acta Cryst. E68, o1044. [DOI] [PMC free article] [PubMed]
  15. Wojtas, L., Pawlica, D. & Stadnicka, K. (2006). J. Mol. Struct. 785, 14–20.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812038834/cv5319sup1.cif

e-68-o2941-sup1.cif (22.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812038834/cv5319Isup2.hkl

e-68-o2941-Isup2.hkl (153.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812038834/cv5319Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES