Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Sep 19;68(Pt 10):o2948. doi: 10.1107/S1600536812038585

Ethyl (E)-3-(6-methyl-4-oxo-4H-chromen-3-yl)prop-2-enoate

Sammer Yousuf a,*, Asma Mukhtar a, Nida Ambreen a, Syed Muhammad Saad a, Khalid M Khan a
PMCID: PMC3470320  PMID: 23125733

Abstract

In the title compound, C15H14O4, the chromone ring system is close to being planar [maximum deviation = 0.015 (2) Å]. The double bond of the ethyl prop-2-enoate chain adopts an E conformation and an intra­molecular C—H⋯O hydrogen bond generates an S6 ring. In the crystal, inversion dimers linked by pairs of C—H⋯O hydrogen bonds generate R 2 2(14) loops. Weak π–π inter­actions [centroid–centroid distance = 3.8493 (12) Å] also occur.

Related literature  

For the biological activity of chromones, see: Patel et al. (2011); Khan et al. (2010); Gautam et al. (2010). For a related structure, see: Wang & Kong (2007).graphic file with name e-68-o2948-scheme1.jpg

Experimental  

Crystal data  

  • C15H14O4

  • M r = 258.26

  • Monoclinic, Inline graphic

  • a = 13.8663 (12) Å

  • b = 12.3512 (10) Å

  • c = 7.6947 (6) Å

  • β = 96.390 (2)°

  • V = 1309.65 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.34 × 0.25 × 0.16 mm

Data collection  

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.968, T max = 0.985

  • 7621 measured reflections

  • 2431 independent reflections

  • 1650 reflections with I > 2σ(I)

  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.142

  • S = 1.04

  • 2431 reflections

  • 175 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812038585/hb6950sup1.cif

e-68-o2948-sup1.cif (22.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812038585/hb6950Isup2.hkl

e-68-o2948-Isup2.hkl (119.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812038585/hb6950Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O2 0.93 2.28 2.908 (2) 124
C9—H9A⋯O3i 0.93 2.37 3.276 (3) 164

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are thankful to OPCW, Netherlands, and the Higher Education Commission (HEC) Pakistan (project No. 1910) for their financial support.

supplementary crystallographic information

Comment

Chromone is a group of naturally occurring oxygen containing heterocyclic compounds having a benzene ring fused with pyran ring. They are widely distributed in plant kingdom and form the basic nucleus of important compounds such as anthocyanin and flavonoids. The chromone moiety forms an important component of pharmacophores of a number of biologically active molecules of synthetic as well as natural origin and therefore responsible for various biological activities (e.g. Patel et al. (2011); Gautam et al. (2010); Khan et al. (2010). The title compound is a chromone derivative obtained as a part of our ongoing project to synthesize libraries of chromone derivatives in order to study their different biological activities. The structure of title compound (Fig. 1) is composed of almost planner chromone moiety (O1/C1–C9) with maximum deviation of 0.015 (2) Å for C7 atom from the root mean square plane. The C11–C12 (1.462 (3) Å) olefinic bond of ethyl prop-2-enoate chain (O3–O4/C10–C14) attached to chromone moiety adopt an E configuartion. The shorter bond lengths of C11–C12 = 1.462 (3) Å than the expected C–C single bond length is due to the conjugation effects of the olefinc bond (C11–C12, 1.462 (3) Å) with carbonyl carbon (O3/C12) of ethyl prop-2-enoate chain (O3–O4/C10–C14). The bond lengths and angle were found to be similar as in structurally realted compound (Wang & Kong, 2007). The E conformation of olefinic bound further stabilized by an intramolecular C11–C11A···O2 intramolecular hydrogen bond. In the crystal inversion-related molecules are consolidated by C9–C9A···O3 hydrogen bond and found stacked along the a-axis. The crystal structure also features weak π–π interaction between pyrane (Cg(1)= O1/C6–C9) and benzene (Cg(2)= C1–C6) of chromone moeity ((Cg(1)to Cg(2) distance = 3.8493 (12) Å;X,1/2-Y,-1/2+Z)

Experimental

A mixture of 3-formyl chromone (10 mmol) and malonic acid (20 mmol), using pyridine (15 ml) as solvent was refluxed in 500 mL round-bottomed flask for 30–45 minutes with vigorous stirring. After completion of reaction (monitored by TLC), the reaction mixture was cooled to room temperature, acidified by concntrated hydrochloric acid (pH 1.0) and stirred again for 30 minutes at room temprature. The yellow colored solid (1.02 g) obtained was filtered and washed with water. The crude residue was dried, dissolved in ethanol (50 ml) along with few drops of H2SO4 and refluxed for 24 h (progress of the reaction was monitored by TLC). After completion of reaction the solvent was evaporated under vacuum followed by addition of saturated solution of NaHCO3 and extracted with ethyl acetate, washed with water. The organic phase was dried over Na2SO4. The solvent was evaporated under reduced pressure to obtain crude product which was further recrystallized in ethanol to obtain yellow blocks in 82% yield (0.94 g).

Refinement

H atoms on Methyl, methylene and methine were positioned geometrically with C—H = 0.96 Å (CH3), 0.97 Å (CH3) and 0.93 Å (CH) and constrained to ride on their parent atoms with Uiso(H)= 1.5Ueq(CH3) and 1.2Ueq(CH2, CH).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with displacement ellipsoids drawn at 30% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the title compound I.

Crystal data

C15H14O4 F(000) = 544
Mr = 258.26 Dx = 1.310 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 13.8663 (12) Å Cell parameters from 1626 reflections
b = 12.3512 (10) Å θ = 3.0–23.3°
c = 7.6947 (6) Å µ = 0.10 mm1
β = 96.390 (2)° T = 298 K
V = 1309.65 (19) Å3 Block, colourless
Z = 4 0.34 × 0.25 × 0.16 mm

Data collection

Bruker SMART APEX CCD diffractometer 2431 independent reflections
Radiation source: fine-focus sealed tube 1650 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.027
ω scan θmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −16→16
Tmin = 0.968, Tmax = 0.985 k = −14→14
7621 measured reflections l = −9→9

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048 H-atom parameters constrained
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0754P)2 + 0.0649P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
2431 reflections Δρmax = 0.17 e Å3
175 parameters Δρmin = −0.15 e Å3
0 restraints Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0028 (16)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.74141 (9) 0.20992 (10) 0.17694 (19) 0.0713 (4)
O2 0.85161 (10) 0.49847 (11) 0.3624 (2) 0.0786 (5)
O3 0.51893 (10) 0.66244 (12) 0.0798 (2) 0.0880 (5)
O4 0.63447 (9) 0.77677 (10) 0.18750 (18) 0.0677 (4)
C1 0.83451 (14) 0.21480 (15) 0.2624 (3) 0.0597 (5)
C2 0.88511 (15) 0.11889 (17) 0.2813 (3) 0.0715 (6)
H2A 0.8566 0.0542 0.2405 0.086*
C3 0.97837 (16) 0.12068 (19) 0.3615 (3) 0.0731 (6)
H3A 1.0133 0.0563 0.3724 0.088*
C4 1.02265 (14) 0.21586 (18) 0.4273 (3) 0.0653 (6)
C5 0.97015 (13) 0.31040 (17) 0.4062 (2) 0.0614 (5)
H5A 0.9987 0.3749 0.4476 0.074*
C6 0.87513 (12) 0.31198 (15) 0.3241 (2) 0.0540 (5)
C7 0.81876 (12) 0.41241 (16) 0.3029 (2) 0.0570 (5)
C8 0.72174 (12) 0.40105 (15) 0.2076 (2) 0.0537 (5)
C9 0.69141 (14) 0.30212 (16) 0.1524 (3) 0.0637 (5)
H9A 0.6298 0.2975 0.0913 0.076*
C10 0.65611 (13) 0.49171 (15) 0.1662 (2) 0.0571 (5)
H10A 0.5964 0.4750 0.1047 0.069*
C11 0.67129 (13) 0.59483 (16) 0.2054 (3) 0.0594 (5)
H11A 0.7292 0.6151 0.2697 0.071*
C12 0.59924 (13) 0.67789 (15) 0.1500 (3) 0.0595 (5)
C13 0.57176 (15) 0.86723 (17) 0.1372 (3) 0.0764 (6)
H13A 0.5168 0.8677 0.2049 0.092*
H13B 0.5476 0.8624 0.0142 0.092*
C14 0.63063 (19) 0.96782 (18) 0.1716 (3) 0.0915 (8)
H14A 0.5895 1.0300 0.1511 0.137*
H14B 0.6807 0.9700 0.0950 0.137*
H14C 0.6596 0.9680 0.2909 0.137*
C15 1.12484 (15) 0.2147 (2) 0.5173 (3) 0.0877 (7)
H15A 1.1556 0.2827 0.4985 0.132*
H15B 1.1606 0.1572 0.4703 0.132*
H15C 1.1234 0.2035 0.6404 0.132*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0564 (9) 0.0616 (9) 0.0918 (11) −0.0011 (6) −0.0101 (7) −0.0061 (7)
O2 0.0551 (8) 0.0610 (9) 0.1124 (12) −0.0051 (6) −0.0225 (8) −0.0025 (8)
O3 0.0525 (9) 0.0756 (10) 0.1274 (14) −0.0032 (7) −0.0270 (9) 0.0082 (9)
O4 0.0541 (8) 0.0600 (9) 0.0857 (10) 0.0022 (6) −0.0068 (7) 0.0026 (7)
C1 0.0510 (11) 0.0680 (13) 0.0589 (12) 0.0022 (9) 0.0009 (9) 0.0014 (10)
C2 0.0715 (14) 0.0655 (13) 0.0760 (14) 0.0070 (10) 0.0019 (11) −0.0045 (11)
C3 0.0705 (14) 0.0801 (15) 0.0680 (14) 0.0231 (11) 0.0049 (11) 0.0014 (11)
C4 0.0547 (12) 0.0860 (15) 0.0544 (12) 0.0135 (10) 0.0027 (9) −0.0025 (10)
C5 0.0481 (11) 0.0766 (14) 0.0585 (12) 0.0038 (9) 0.0016 (9) −0.0031 (10)
C6 0.0450 (10) 0.0643 (12) 0.0521 (11) 0.0008 (8) 0.0023 (8) 0.0018 (9)
C7 0.0440 (10) 0.0626 (12) 0.0628 (12) −0.0046 (9) −0.0012 (9) 0.0042 (10)
C8 0.0434 (10) 0.0589 (11) 0.0573 (11) −0.0043 (8) −0.0004 (8) 0.0041 (9)
C9 0.0471 (11) 0.0678 (13) 0.0732 (14) −0.0010 (9) −0.0067 (10) 0.0017 (10)
C10 0.0416 (10) 0.0668 (13) 0.0611 (12) −0.0055 (8) −0.0028 (8) 0.0088 (9)
C11 0.0452 (10) 0.0651 (13) 0.0651 (12) −0.0041 (9) −0.0057 (9) 0.0069 (10)
C12 0.0444 (11) 0.0650 (13) 0.0669 (13) −0.0038 (9) −0.0036 (9) 0.0065 (10)
C13 0.0689 (14) 0.0685 (14) 0.0901 (16) 0.0141 (10) 0.0014 (12) 0.0090 (11)
C14 0.117 (2) 0.0648 (14) 0.0893 (17) 0.0040 (13) −0.0039 (15) −0.0030 (12)
C15 0.0587 (13) 0.118 (2) 0.0827 (16) 0.0251 (13) −0.0066 (11) −0.0078 (14)

Geometric parameters (Å, º)

O1—C9 1.336 (2) C7—C8 1.465 (2)
O1—C1 1.383 (2) C8—C9 1.346 (3)
O2—C7 1.225 (2) C8—C10 1.456 (2)
O3—C12 1.198 (2) C9—H9A 0.9300
O4—C12 1.335 (2) C10—C11 1.320 (3)
O4—C13 1.442 (2) C10—H10A 0.9300
C1—C2 1.376 (3) C11—C12 1.462 (3)
C1—C6 1.387 (3) C11—H11A 0.9300
C2—C3 1.370 (3) C13—C14 1.494 (3)
C2—H2A 0.9300 C13—H13A 0.9700
C3—C4 1.395 (3) C13—H13B 0.9700
C3—H3A 0.9300 C14—H14A 0.9600
C4—C5 1.376 (3) C14—H14B 0.9600
C4—C15 1.506 (3) C14—H14C 0.9600
C5—C6 1.396 (3) C15—H15A 0.9600
C5—H5A 0.9300 C15—H15B 0.9600
C6—C7 1.466 (3) C15—H15C 0.9600
C9—O1—C1 118.19 (15) C8—C9—H9A 116.9
C12—O4—C13 117.10 (15) C11—C10—C8 127.74 (18)
C2—C1—O1 116.79 (18) C11—C10—H10A 116.1
C2—C1—C6 121.72 (19) C8—C10—H10A 116.1
O1—C1—C6 121.49 (16) C10—C11—C12 121.59 (18)
C3—C2—C1 118.6 (2) C10—C11—H11A 119.2
C3—C2—H2A 120.7 C12—C11—H11A 119.2
C1—C2—H2A 120.7 O3—C12—O4 122.87 (18)
C2—C3—C4 122.18 (19) O3—C12—C11 126.20 (18)
C2—C3—H3A 118.9 O4—C12—C11 110.92 (16)
C4—C3—H3A 118.9 O4—C13—C14 107.19 (18)
C5—C4—C3 117.80 (19) O4—C13—H13A 110.3
C5—C4—C15 121.4 (2) C14—C13—H13A 110.3
C3—C4—C15 120.81 (19) O4—C13—H13B 110.3
C4—C5—C6 121.70 (19) C14—C13—H13B 110.3
C4—C5—H5A 119.1 H13A—C13—H13B 108.5
C6—C5—H5A 119.1 C13—C14—H14A 109.5
C1—C6—C5 118.00 (17) C13—C14—H14B 109.5
C1—C6—C7 120.19 (17) H14A—C14—H14B 109.5
C5—C6—C7 121.81 (17) C13—C14—H14C 109.5
O2—C7—C8 123.54 (17) H14A—C14—H14C 109.5
O2—C7—C6 121.42 (16) H14B—C14—H14C 109.5
C8—C7—C6 115.04 (17) C4—C15—H15A 109.5
C9—C8—C10 117.61 (16) C4—C15—H15B 109.5
C9—C8—C7 118.83 (17) H15A—C15—H15B 109.5
C10—C8—C7 123.55 (16) C4—C15—H15C 109.5
O1—C9—C8 126.19 (18) H15A—C15—H15C 109.5
O1—C9—H9A 116.9 H15B—C15—H15C 109.5
C9—O1—C1—C2 −178.25 (17) C1—C6—C7—C8 −2.5 (3)
C9—O1—C1—C6 1.1 (3) C5—C6—C7—C8 177.57 (16)
O1—C1—C2—C3 178.48 (17) O2—C7—C8—C9 −177.91 (19)
C6—C1—C2—C3 −0.8 (3) C6—C7—C8—C9 1.7 (2)
C1—C2—C3—C4 1.3 (3) O2—C7—C8—C10 3.2 (3)
C2—C3—C4—C5 −1.4 (3) C6—C7—C8—C10 −177.23 (16)
C2—C3—C4—C15 179.04 (19) C1—O1—C9—C8 −2.1 (3)
C3—C4—C5—C6 0.9 (3) C10—C8—C9—O1 179.58 (17)
C15—C4—C5—C6 −179.49 (19) C7—C8—C9—O1 0.6 (3)
C2—C1—C6—C5 0.4 (3) C9—C8—C10—C11 −179.17 (19)
O1—C1—C6—C5 −178.87 (16) C7—C8—C10—C11 −0.2 (3)
C2—C1—C6—C7 −179.49 (17) C8—C10—C11—C12 178.09 (17)
O1—C1—C6—C7 1.2 (3) C13—O4—C12—O3 −1.0 (3)
C4—C5—C6—C1 −0.5 (3) C13—O4—C12—C11 178.89 (16)
C4—C5—C6—C7 179.43 (17) C10—C11—C12—O3 6.7 (3)
C1—C6—C7—O2 177.08 (18) C10—C11—C12—O4 −173.18 (17)
C5—C6—C7—O2 −2.8 (3) C12—O4—C13—C14 −172.99 (17)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C11—H11A···O2 0.93 2.28 2.908 (2) 124
C9—H9A···O3i 0.93 2.37 3.276 (3) 164

Symmetry code: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6950).

References

  1. Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Gautam, R., Srivastava, A., Jachak, M. S. & Saklani, A. (2010). Fitoterapia, 81, 45–49. [DOI] [PubMed]
  3. Khan, K. M., Ambreen, N., Mughal, U. R., Jalil, S., Perveen, S. & Choudhary, M. I. (2010). Eur. J. Med. Chem. 45, 4058–4064. [DOI] [PubMed]
  4. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  5. Patel, M. C., Nilesh, N. G. & Rajani, D. P. (2011). Der Pharma Chem. 3, 422–432.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Wang, X.-B. & Kong, L.-Y. (2007). Acta Cryst. E63, o4340.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812038585/hb6950sup1.cif

e-68-o2948-sup1.cif (22.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812038585/hb6950Isup2.hkl

e-68-o2948-Isup2.hkl (119.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812038585/hb6950Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES