Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Sep 19;68(Pt 10):o2957. doi: 10.1107/S160053681203838X

3-Benzyl-5-methyl-1,2-benzoxazole 2-oxide

G Anuradha a, Vasuki Gopalsamy a,*, A Veera Reddy b, G Laxminarasimhulu b
PMCID: PMC3470327  PMID: 23125740

Abstract

In the title compound, C15H13NO2, the isoxazole unit and the attached benzene ring are almost coplanar, making a dihedral angle of 1.42 (8)°. The benzyl ring is inclined to the isoxazole ring by 74.19 (8)° and is in a +sc conformation with respect to the benzisoxazole unit. In the crystal, C—H⋯O hydrogen bonds link the mol­ecules, forming zigzag chains propagating along the b axis. There are also π–π inter­actions present involving the isoxazole and benzyl rings [centroid–centroid distance = 3.5209 (10) Å], and C—H⋯π inter­actions involving the benzene ring of the benzoisoxazole unit and the methyl­ene bridging group.

Related literature  

For the anti-epileptic, anti­spasmodic and anti­fungal properties of benzoxazole derivatives, see: Jian et al. (2007). For their anti­tuberculer activity, see: Vinšová et al. (2007). For other biological activties of isoxazoles and benzisoxazole derivatives, see: Veera Reddy et al. (2011). For details of the synthesis, see: Veera Reddy et al. (2011). For the related structure 5-chloro-3-methyl-1,2-benzisoxazole-2-oxide, see: Ghari & Viterbo (1982).graphic file with name e-68-o2957-scheme1.jpg

Experimental  

Crystal data  

  • C15H13NO2

  • M r = 239.26

  • Monoclinic, Inline graphic

  • a = 6.4527 (2) Å

  • b = 11.2213 (4) Å

  • c = 16.9371 (7) Å

  • β = 100.002 (2)°

  • V = 1207.74 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999) T min = 0.974, T max = 0.983

  • 13491 measured reflections

  • 3512 independent reflections

  • 2113 reflections with I > 2σ(I)

  • R int = 0.026

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.172

  • S = 1.06

  • 3512 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681203838X/su2493sup1.cif

e-68-o2957-sup1.cif (17.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681203838X/su2493Isup2.hkl

e-68-o2957-Isup2.hkl (172.3KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681203838X/su2493Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2i 0.93 2.49 3.154 (2) 128
C8—H8BCg2ii 0.97 3.00 3.6800 (16) 129

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Sophisticated Analytical Instrument Facility, IIT-Madras, Chennai-36, for the data collection.

supplementary crystallographic information

Comment

Isoxazoles and benzisoxazoles are important classes of nitrogen-oxygen containing heterocycles. They have extensive biological applications and are useful intermediates in medicinal chemistry (Veera Reddy et al., 2011). The benzoxazole skeleton is an essential structural unit of several antibacterial, anticancer and anti-HIV-1 agents. The antituberculotic activity of several benzoxazole derivatives have been reported (Vinšová et al., 2007). Some benzoxazoles exhibit high fluorescence and are used as optical whitening agents, photoluminesents and active components in dye lasers. Benzoxazole derivatives show antiepileptic, antispasmodic and antifungal properties (Jian et al., 2007). 3-substituted 1,2-benzisoxazole derivatives are emerging as potential antipsychotic compounds, antiseizure agents and are also used to block the repetitive firing of voltage-sensitive sodium channels and so reduce voltage-sensitive T-type calcium currents (Veera Reddy et al., 2011).

The molecular structure of the title functionalized 1,2-benzisoxazole compound is illustrated in Fig. 1. It contains three planar rings, namely, a methyl substituted benzene ring A = C2—C7, an isoxazole ring B =C1/C7/C6/O1/N1 and the benzyl ring C = C9—C14. The dihedral angles between rings A/B and B/C are 1.42 (8)° and 74.19 (8)°, respectively.

The bond lengths and angles in the title compound are in good agreement with the expected values and are comparable with the corresponding values reported for 5-chloro-3-methyl-1,2-benzisoxazole-2-oxide (Ghari & Viterbo, 1982).

In the crystal, molecules are linked via C—H···O hydrogen bonds leading to the formation of zigzag chains propagating along the a axis direction (Tabel 1 and Fig. 2). Molecules are also linked via C—H···π (Table 1) and π···π interactions. The latter involve the isoxazole (B = Cg1) and benzyl rings (C = Cg3) [Cg1···Cg3i = 3.5209 (10) Å; symmetry code: (i) -x + 1.5, y - 1/2, -z + 1/2].

Experimental

The compound was synthesized by the published method (Veera Reddy et al., 2011)

Refinement

All the H atoms were positioned geometrically and treated as riding atoms: C—H = 0.93, 0.96 and 0.97 Å for CH, CH3 and CH2 H atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.5 for CH3 H atoms and = 1.2 for other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom numbering. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A view along the a axis of the crystal packing of the title compound. The intermolecular C—H···O hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in these interactions have been omitted for clarity).

Crystal data

C15H13NO2 F(000) = 504
Mr = 239.26 Dx = 1.316 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 13955 reflections
a = 6.4527 (2) Å θ = 1.2–30.1°
b = 11.2213 (4) Å µ = 0.09 mm1
c = 16.9371 (7) Å T = 293 K
β = 100.002 (2)° Block, colourless
V = 1207.74 (8) Å3 0.30 × 0.20 × 0.20 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer 3512 independent reflections
Radiation source: fine-focus sealed tube 2113 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.026
ω and φ scan θmax = 30.1°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 1999) h = −9→8
Tmin = 0.974, Tmax = 0.983 k = −15→13
13491 measured reflections l = −23→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0836P)2 + 0.1125P] where P = (Fo2 + 2Fc2)/3
3512 reflections (Δ/σ)max = 0.001
163 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.28937 (17) 0.48425 (11) 0.21034 (8) 0.0760 (5)
O2 0.3491 (2) 0.63946 (12) 0.29866 (9) 0.0979 (6)
N1 0.4211 (2) 0.58198 (13) 0.24703 (9) 0.0682 (5)
C1 0.5941 (2) 0.58880 (13) 0.21630 (9) 0.0532 (5)
C2 0.7187 (2) 0.46425 (12) 0.10447 (8) 0.0508 (4)
C3 0.6602 (3) 0.37116 (13) 0.05213 (9) 0.0577 (5)
C4 0.4707 (3) 0.31228 (14) 0.05425 (11) 0.0688 (6)
C5 0.3391 (3) 0.34234 (15) 0.10596 (12) 0.0728 (6)
C6 0.3994 (2) 0.43709 (14) 0.15601 (10) 0.0590 (5)
C7 0.5868 (2) 0.49807 (12) 0.15712 (9) 0.0485 (4)
C8 0.7549 (2) 0.68132 (13) 0.24347 (9) 0.0574 (5)
C9 0.7396 (2) 0.78613 (12) 0.18692 (8) 0.0492 (4)
C10 0.5636 (2) 0.85898 (13) 0.17589 (9) 0.0578 (5)
C11 0.5506 (3) 0.95583 (15) 0.12500 (11) 0.0685 (6)
C12 0.7117 (3) 0.98059 (16) 0.08532 (11) 0.0753 (7)
C13 0.8872 (3) 0.90974 (17) 0.09595 (11) 0.0747 (7)
C14 0.9005 (2) 0.81256 (15) 0.14674 (10) 0.0615 (5)
C15 0.7953 (3) 0.33322 (18) −0.00672 (11) 0.0800 (7)
H2 0.84520 0.50400 0.10450 0.0610*
H4 0.43230 0.24970 0.01870 0.0830*
H5 0.21500 0.30080 0.10730 0.0870*
H8A 0.89380 0.64610 0.24820 0.0690*
H8B 0.73800 0.70920 0.29620 0.0690*
H10 0.45330 0.84250 0.20300 0.0690*
H11 0.43170 1.00420 0.11780 0.0820*
H12 0.70270 1.04570 0.05090 0.0900*
H13 0.99740 0.92700 0.06900 0.0900*
H14 1.02000 0.76470 0.15370 0.0740*
H15A 0.72950 0.26790 −0.03810 0.1200*
H15B 0.93050 0.30870 0.02160 0.1200*
H15C 0.81250 0.39870 −0.04150 0.1200*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0529 (6) 0.0788 (8) 0.1006 (10) −0.0032 (6) 0.0250 (6) 0.0178 (7)
O2 0.0986 (10) 0.0965 (10) 0.1127 (11) 0.0202 (8) 0.0581 (9) −0.0021 (9)
N1 0.0641 (8) 0.0666 (9) 0.0788 (9) 0.0092 (7) 0.0262 (7) 0.0079 (7)
C1 0.0519 (8) 0.0538 (8) 0.0546 (8) 0.0049 (6) 0.0116 (6) 0.0101 (6)
C2 0.0481 (7) 0.0505 (8) 0.0512 (8) −0.0029 (6) 0.0018 (6) 0.0074 (6)
C3 0.0650 (9) 0.0501 (8) 0.0521 (8) 0.0031 (7) −0.0065 (7) 0.0055 (6)
C4 0.0748 (11) 0.0507 (9) 0.0710 (11) −0.0063 (8) −0.0148 (9) 0.0047 (8)
C5 0.0573 (9) 0.0597 (10) 0.0930 (13) −0.0181 (8) −0.0100 (9) 0.0202 (9)
C6 0.0467 (7) 0.0582 (9) 0.0708 (10) −0.0024 (7) 0.0062 (7) 0.0187 (7)
C7 0.0439 (7) 0.0472 (7) 0.0524 (8) −0.0022 (6) 0.0025 (6) 0.0115 (6)
C8 0.0628 (8) 0.0557 (8) 0.0516 (8) 0.0011 (7) 0.0040 (6) −0.0009 (6)
C9 0.0541 (7) 0.0468 (7) 0.0451 (7) −0.0011 (6) 0.0041 (6) −0.0098 (6)
C10 0.0552 (8) 0.0563 (9) 0.0607 (9) 0.0023 (7) 0.0065 (7) −0.0086 (7)
C11 0.0730 (10) 0.0533 (9) 0.0724 (11) 0.0085 (8) −0.0059 (9) −0.0047 (8)
C12 0.0993 (14) 0.0570 (10) 0.0650 (11) −0.0094 (10) 0.0017 (10) 0.0035 (8)
C13 0.0853 (12) 0.0712 (11) 0.0713 (11) −0.0149 (10) 0.0242 (9) −0.0008 (9)
C14 0.0574 (8) 0.0609 (9) 0.0676 (10) 0.0022 (7) 0.0149 (7) −0.0056 (7)
C15 0.0952 (13) 0.0782 (11) 0.0626 (11) 0.0089 (10) 0.0024 (9) −0.0121 (9)

Geometric parameters (Å, º)

O1—N1 1.4587 (19) C11—C12 1.361 (3)
O1—C6 1.363 (2) C12—C13 1.370 (3)
O2—N1 1.240 (2) C13—C14 1.382 (3)
N1—C1 1.3133 (19) C2—H2 0.9300
C1—C7 1.424 (2) C4—H4 0.9300
C1—C8 1.483 (2) C5—H5 0.9300
C2—C3 1.380 (2) C8—H8A 0.9700
C2—C7 1.3883 (19) C8—H8B 0.9700
C3—C4 1.396 (3) C10—H10 0.9300
C3—C15 1.496 (3) C11—H11 0.9300
C4—C5 1.364 (3) C12—H12 0.9300
C5—C6 1.373 (2) C13—H13 0.9300
C6—C7 1.3867 (19) C14—H14 0.9300
C8—C9 1.509 (2) C15—H15A 0.9600
C9—C10 1.3854 (19) C15—H15B 0.9600
C9—C14 1.3691 (19) C15—H15C 0.9600
C10—C11 1.381 (2)
N1—O1—C6 104.25 (11) C3—C2—H2 120.00
O1—N1—O2 115.44 (12) C7—C2—H2 120.00
O1—N1—C1 110.34 (13) C3—C4—H4 118.00
O2—N1—C1 134.23 (15) C5—C4—H4 118.00
N1—C1—C7 108.11 (13) C4—C5—H5 122.00
N1—C1—C8 120.98 (13) C6—C5—H5 122.00
C7—C1—C8 130.90 (12) C1—C8—H8A 109.00
C3—C2—C7 119.33 (14) C1—C8—H8B 109.00
C2—C3—C4 119.02 (15) C9—C8—H8A 109.00
C2—C3—C15 121.18 (16) C9—C8—H8B 109.00
C4—C3—C15 119.81 (15) H8A—C8—H8B 108.00
C3—C4—C5 123.05 (16) C9—C10—H10 120.00
C4—C5—C6 116.53 (16) C11—C10—H10 120.00
O1—C6—C5 126.33 (14) C10—C11—H11 120.00
O1—C6—C7 110.76 (13) C12—C11—H11 120.00
C5—C6—C7 122.91 (15) C11—C12—H12 120.00
C1—C7—C2 134.32 (13) C13—C12—H12 120.00
C1—C7—C6 106.53 (12) C12—C13—H13 120.00
C2—C7—C6 119.13 (13) C14—C13—H13 120.00
C1—C8—C9 112.55 (12) C9—C14—H14 120.00
C8—C9—C10 120.48 (12) C13—C14—H14 120.00
C8—C9—C14 120.84 (12) C3—C15—H15A 109.00
C10—C9—C14 118.67 (13) C3—C15—H15B 109.00
C9—C10—C11 120.54 (14) C3—C15—H15C 110.00
C10—C11—C12 120.02 (17) H15A—C15—H15B 110.00
C11—C12—C13 120.11 (17) H15A—C15—H15C 109.00
C12—C13—C14 120.02 (17) H15B—C15—H15C 110.00
C9—C14—C13 120.65 (14)
C6—O1—N1—O2 179.19 (14) C2—C3—C4—C5 0.0 (3)
C6—O1—N1—C1 −0.63 (17) C3—C4—C5—C6 1.5 (3)
N1—O1—C6—C5 −179.86 (16) C4—C5—C6—C7 −2.1 (3)
N1—O1—C6—C7 0.19 (16) C4—C5—C6—O1 177.92 (16)
O1—N1—C1—C7 0.80 (17) O1—C6—C7—C1 0.26 (17)
O2—N1—C1—C8 0.1 (3) O1—C6—C7—C2 −178.71 (13)
O2—N1—C1—C7 −178.98 (18) C5—C6—C7—C1 −179.69 (16)
O1—N1—C1—C8 179.89 (12) C5—C6—C7—C2 1.3 (2)
C8—C1—C7—C2 −0.9 (3) C1—C8—C9—C10 65.02 (17)
C8—C1—C7—C6 −179.63 (15) C1—C8—C9—C14 −116.26 (15)
N1—C1—C8—C9 −99.68 (17) C8—C9—C10—C11 179.13 (14)
C7—C1—C8—C9 79.18 (19) C14—C9—C10—C11 0.4 (2)
N1—C1—C7—C6 −0.66 (17) C8—C9—C14—C13 −178.99 (15)
N1—C1—C7—C2 178.08 (16) C10—C9—C14—C13 −0.2 (2)
C7—C2—C3—C15 178.79 (14) C9—C10—C11—C12 −0.2 (3)
C7—C2—C3—C4 −0.8 (2) C10—C11—C12—C13 −0.2 (3)
C3—C2—C7—C6 0.2 (2) C11—C12—C13—C14 0.3 (3)
C3—C2—C7—C1 −178.40 (16) C12—C13—C14—C9 −0.1 (3)
C15—C3—C4—C5 −179.66 (17)

Hydrogen-bond geometry (Å, º)

Cg2 is the centroid of the C2–C7 ring.

D—H···A D—H H···A D···A D—H···A
C5—H5···O2i 0.93 2.49 3.154 (2) 128
C8—H8B···Cg2ii 0.97 3.00 3.6800 (16) 129

Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x+3/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2493).

References

  1. Bruker (1999). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2004). APEX2 and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  5. Ghari, G. & Viterbo, D. (1982). Acta Cryst. B38, 323–325.
  6. Jian, F.-F., Yi, W., Wang, L.-M. & Wang, J. (2007). Acta Cryst. E63, o3887.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Veera Reddy, A., Laxminarasimhulu, G., Uday, B. R. S. & Pramod, K. (2011). Indian J. Chem. Sect. B, 50, 119–125.
  10. Vinšová, J., Marek, J., Vančo, J. & Csöllei, J. (2007). Acta Cryst. E63, o2802–o2803.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681203838X/su2493sup1.cif

e-68-o2957-sup1.cif (17.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681203838X/su2493Isup2.hkl

e-68-o2957-Isup2.hkl (172.3KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681203838X/su2493Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES