Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Sep 19;68(Pt 10):o2958. doi: 10.1107/S1600536812038718

4-{(E)-2-[4-(But-3-en-1-yl­oxy)phen­yl]diazen-1-yl}benzoic acid

Md Lutfor Rahman a,*, Huey Chong Kwong b, Mashitah Mohd Yusoff a, Gurumurthy Hegde a, Mohamed Ibrahim Mohamed Tahir b, Mohamad Zaki Ab Rahman b
PMCID: PMC3470328  PMID: 23125741

Abstract

The title compound, C17H16N2O3, has an E conformation about the azobenzene (–N=N–) linkage. The benzene rings are twisted slightly with respect to each other [6.79 (9)°], while the dihedral angle between the plane through the carb­oxy group and the attached benzene ring is 3.2 (2)°. In the crystal, mol­ecules are oriented with the carb­oxy groups head-to-head, forming O—H⋯O hydrogen-bonded inversion dimers. These dimers are connected by C—H⋯O hydrogen-bonds into layers lying parallel to the (013) plane.

Related literature  

For the physical properties of compounds containing an azobenzene (–N=N–) linkage, see: Chigrinov (2005); Hegde (2007). For related structures, see: Yu & Liu (2009); Lai et al. (2002); Centore & Tuzi (2003). For standard bond lengths, see Allen et al. (1987).graphic file with name e-68-o2958-scheme1.jpg

Experimental  

Crystal data  

  • C17H16N2O3

  • M r = 296.33

  • Triclinic, Inline graphic

  • a = 7.0937 (7) Å

  • b = 9.8687 (10) Å

  • c = 11.2490 (11) Å

  • α = 87.334 (8)°

  • β = 73.475 (8)°

  • γ = 75.174 (8)°

  • V = 729.54 (13) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.77 mm−1

  • T = 100 K

  • 0.26 × 0.16 × 0.04 mm

Data collection  

  • Oxford Diffraction Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) T min = 0.85, T max = 0.97

  • 9940 measured reflections

  • 2783 independent reflections

  • 2298 reflections with I > 2.0σ(I)

  • R int = 0.024

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.146

  • S = 1.00

  • 2773 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: CRYSTALS.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812038718/su2476sup1.cif

e-68-o2958-sup1.cif (17.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812038718/su2476Isup2.hkl

e-68-o2958-Isup2.hkl (174.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812038718/su2476Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H2⋯O1i 0.87 1.76 2.612 (3) 166 (1)
C21—H211⋯O1ii 0.95 2.50 3.275 (3) 139 (1)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This research was supported by a UMP research grant (No. RDU100338).

supplementary crystallographic information

Comment

An in a molecule introduces the possibility of photochromism and photoisomerization (Chigrinov, 2005). Photonics, in which the light can be controlled by light as stimulus has been exploited (Hegde, 2007). Upon absorption of UV light (~ 365 nm) the energetically more stable E conformation, transforms into the Z conformation. The reverse transformation of the Z isomer into the E isomer can be brought about by irradiation with visible light (in the range of 400–500 nm). The latter can also occur in the "dark" by a process known as "thermal back relaxation" in a period ranging from minutes to tens of hours depending on the system. In this case molecules again transform from the metastable cis-conformation to the energetically stable trans-conformation. In conclusion, the present investigation on rod-shaped azo dyes is very useful for a variety of photonic applications. Excellent quality, cost effective, easy to prepare, are properties which make these devices very attractive for future generations. Detailed investigations on the physics of these azo dyes is under intense consideration.

The bond lengths (Allen et al.,1987) and bond angles in the titled compound (Fig. 1) are normal. The carbonyl group (C2/O1/O3) is almost coplanar with the attached benzene ring (C4-C7/C21/C22) with a dihedral angle of only 3.2 (2)°. The length of N8═N9 bond is 1.263 (2) Å and the torsion angle for the azo unit (C7—N8—N9—C10) is -177.75 (16)° rather than ca. ±180° as observed elsewhere: For example: 4,4-Azinodibenzoic acid (Yu and Liu, 2009) and (E)-ethyl 4-((4-(decanoyloxy)phenyl)diazenyl)benzoate (Lai et al.,2002). However, it is comparable with the value of 175.10° observed for (E)-4-((4-((2-hydroxyethyl)(methyl)amino)phenyl)diazenyl)benzoic acid (Centore & Tuzi, 2003). The benzene rings (C4-C7/C21/C22 and C10-C3/C19/C20) lie at a mutual dihedral angles of 6.79 (9)°, compared to 16.69° in (E)-4-((4-((2-hydroxyethyl)(methyl)amino)phenyl)diazenyl)benzoic acid (Centore & Tuzi, 2003). The C15—C16—C17—C18 torsion angle in the butyl group is 126.1 (3)°.

In the crystal, the carboxyl groups are oriented head-to-head forming hydrogen bonded inversion dimers (Table 1 and Fig. 2). These dimers are further linked by C—H···O hydrogen bonds to a generate a layer parallel to the (013) plane (Table 1 and Fig. 2).

Experimental

The title compound was prepared from ethyl 4-aminobenzoate. Firstly the diazonuim salt was prepared using one equivalent of sodium nitrite to one equivalent of ethyl 4-aminobenzoate in methanol - water mixture at 275 K, in the presence of 3 equivalents of aqueous hydrochloric acid, which was coupled with phenol to yield ethyl 4-[(4-hydroxyphenyl)diazenyl]benzoate. This compound was then alkylated with 4-bromo-1-butene in the presence of potassium carbonate as base to give the ester, ethyl 4-{[4-(but-3-en-1-yloxy)phenyl]diazenyl}benzoate. This compound was then hydrolyzed under basic conditions to yield the title benzoic acid. Brown plate-like crystals of the title compound were obtained by slow evaporation of a solution in methanol.

Refinement

The H atoms were all located in a difference Fourier map, but those attached to carbon atoms were repositioned geometrically. They were all initially refined with soft restraints on the bond lengths and angles to regularize their geometry: C—H = 0.93 (2)–0.98 (2) Å and O—H = 0.82 (2) Å with Uiso(H) = k × Ueq(O,C) where k = 1.5 for the OH H atom and = 1.2 for the C-bound H atoms. In the final cycles or refinement they were allowed to ride on their parent atom.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule with the atom numbering and displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A view along the c axis of the crystal packing of the title compound, with the hydrogen bonds shown as dashed lines [the C-bound H atoms have been omitted for clarity].

Crystal data

C17H16N2O3 Z = 2
Mr = 296.33 F(000) = 312
Triclinic, P1 Dx = 1.349 Mg m3
Hall symbol: -P 1 Cu Kα radiation, λ = 1.54180 Å
a = 7.0937 (7) Å Cell parameters from 3768 reflections
b = 9.8687 (10) Å θ = 4–71°
c = 11.2490 (11) Å µ = 0.77 mm1
α = 87.334 (8)° T = 100 K
β = 73.475 (8)° Plate, brown
γ = 75.174 (8)° 0.26 × 0.16 × 0.04 mm
V = 729.54 (13) Å3

Data collection

Oxford Diffraction Gemini diffractometer 2783 independent reflections
Radiation source: sealed x-ray tube 2298 reflections with I > 2.0σ(I)
Graphite monochromator Rint = 0.024
ω scans θmax = 71.5°, θmin = 4.1°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) h = −8→8
Tmin = 0.85, Tmax = 0.97 k = −11→11
9940 measured reflections l = −13→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 H-atom parameters constrained
wR(F2) = 0.146 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.06P)2 + 0.76P], where P = (max(Fo2,0) + 2Fc2)/3
S = 1.00 (Δ/σ)max = 0.0003776
2773 reflections Δρmax = 0.51 e Å3
199 parameters Δρmin = −0.33 e Å3
0 restraints

Special details

Refinement. This compound, 9940 numbers of reflections were collected and measured during the refinement. Symmetry related reflections were measured more than once and after merging the symmetry equivalent reflections there were only 2783 reflection left. 10 more reflections were filtered, as sigma cutoff was set as 3 and (sinθ/x)set to>0.01 (to eliminate reflection measured near the vicinity of beam stop) therefore numbers of reflection reduced to 2773.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.0122 (2) 1.34005 (15) 0.07329 (14) 0.0276
C2 0.1938 (3) 1.3516 (2) 0.04699 (18) 0.0221
O3 0.2517 (2) 1.45464 (14) −0.00910 (14) 0.0281
C4 0.3484 (3) 1.2387 (2) 0.08338 (17) 0.0215
C5 0.2990 (3) 1.1180 (2) 0.14000 (18) 0.0231
C6 0.4449 (3) 1.0125 (2) 0.17190 (18) 0.0233
C7 0.6447 (3) 1.0260 (2) 0.14525 (18) 0.0220
N8 0.8099 (2) 0.92608 (18) 0.17206 (15) 0.0238
N9 0.7751 (2) 0.81065 (17) 0.21222 (15) 0.0235
C10 0.9450 (3) 0.7184 (2) 0.24132 (18) 0.0243
C11 1.1313 (3) 0.7536 (2) 0.2247 (2) 0.0293
C12 1.2896 (3) 0.6624 (2) 0.2565 (2) 0.0321
C13 1.2665 (3) 0.5349 (2) 0.30679 (19) 0.0302
O14 1.4341 (2) 0.45519 (16) 0.33669 (15) 0.0364
C15 1.4290 (4) 0.3232 (2) 0.3930 (2) 0.0349
C16 1.6307 (4) 0.2701 (3) 0.4247 (2) 0.0399
C17 1.6430 (4) 0.1366 (3) 0.4911 (2) 0.0388
C18 1.7890 (4) 0.0213 (3) 0.4581 (3) 0.0455
C19 1.0850 (3) 0.4962 (2) 0.32338 (19) 0.0310
C20 0.9240 (3) 0.5897 (2) 0.28909 (19) 0.0287
C21 0.6931 (3) 1.1467 (2) 0.09065 (19) 0.0252
C22 0.5462 (3) 1.2529 (2) 0.06039 (18) 0.0238
H51 0.1631 1.1098 0.1566 0.0298*
H61 0.4112 0.9298 0.2120 0.0302*
H111 1.1483 0.8433 0.1888 0.0379*
H121 1.4168 0.6860 0.2448 0.0406*
H151 1.3110 0.3369 0.4683 0.0453*
H152 1.4146 0.2584 0.3328 0.0447*
H161 1.6418 0.3468 0.4751 0.0512*
H162 1.7478 0.2531 0.3482 0.0518*
H171 1.5325 0.1356 0.5657 0.0520*
H182 1.9017 0.0237 0.3829 0.0605*
H181 1.7859 −0.0632 0.5068 0.0604*
H191 1.0658 0.4083 0.3577 0.0394*
H201 0.8003 0.5652 0.2975 0.0369*
H211 0.8278 1.1552 0.0740 0.0331*
H221 0.5794 1.3355 0.0213 0.0322*
H2 0.1704 1.5151 −0.0423 0.0500*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0212 (7) 0.0239 (8) 0.0399 (8) −0.0047 (6) −0.0132 (6) 0.0029 (6)
C2 0.0228 (10) 0.0191 (10) 0.0252 (10) −0.0034 (8) −0.0092 (8) −0.0018 (8)
O3 0.0270 (8) 0.0210 (8) 0.0385 (8) −0.0048 (6) −0.0154 (6) 0.0082 (6)
C4 0.0213 (10) 0.0195 (10) 0.0243 (9) −0.0033 (8) −0.0087 (8) −0.0015 (8)
C5 0.0183 (9) 0.0230 (11) 0.0295 (10) −0.0048 (8) −0.0094 (8) 0.0016 (8)
C6 0.0236 (10) 0.0203 (10) 0.0279 (10) −0.0064 (8) −0.0098 (8) 0.0030 (8)
C7 0.0213 (10) 0.0198 (10) 0.0248 (10) −0.0009 (8) −0.0100 (8) −0.0005 (8)
N8 0.0217 (8) 0.0225 (9) 0.0272 (9) −0.0028 (7) −0.0094 (7) 0.0016 (7)
N9 0.0207 (8) 0.0218 (9) 0.0258 (8) −0.0003 (7) −0.0073 (7) −0.0008 (7)
C10 0.0235 (10) 0.0231 (11) 0.0228 (10) 0.0018 (8) −0.0079 (8) −0.0014 (8)
C11 0.0256 (11) 0.0273 (11) 0.0338 (11) −0.0009 (9) −0.0116 (9) −0.0001 (9)
C12 0.0260 (11) 0.0317 (12) 0.0391 (12) −0.0018 (9) −0.0145 (9) −0.0008 (10)
C13 0.0281 (11) 0.0311 (12) 0.0276 (10) 0.0047 (9) −0.0119 (9) −0.0046 (9)
O14 0.0356 (9) 0.0287 (8) 0.0461 (9) 0.0007 (7) −0.0216 (7) 0.0028 (7)
C15 0.0410 (13) 0.0270 (12) 0.0348 (12) −0.0002 (10) −0.0149 (10) −0.0006 (9)
C16 0.0456 (14) 0.0359 (14) 0.0420 (13) −0.0055 (11) −0.0228 (11) 0.0019 (10)
C17 0.0383 (13) 0.0374 (13) 0.0408 (13) −0.0019 (10) −0.0187 (10) 0.0032 (10)
C18 0.0463 (15) 0.0372 (14) 0.0563 (16) −0.0033 (11) −0.0264 (13) 0.0022 (12)
C19 0.0390 (12) 0.0218 (11) 0.0273 (10) 0.0000 (9) −0.0086 (9) 0.0013 (8)
C20 0.0272 (11) 0.0270 (11) 0.0284 (11) −0.0022 (9) −0.0064 (8) −0.0009 (8)
C21 0.0196 (9) 0.0265 (11) 0.0310 (10) −0.0066 (8) −0.0087 (8) 0.0002 (8)
C22 0.0237 (10) 0.0196 (10) 0.0294 (10) −0.0055 (8) −0.0101 (8) 0.0031 (8)

Geometric parameters (Å, º)

O1—C2 1.271 (2) C13—O14 1.367 (3)
C2—O3 1.268 (2) C13—C19 1.395 (3)
C2—C4 1.483 (3) O14—C15 1.426 (3)
O3—H2 0.868 C15—C16 1.529 (3)
C4—C5 1.401 (3) C15—H151 0.993
C4—C22 1.395 (3) C15—H152 0.996
C5—C6 1.382 (3) C16—C17 1.479 (3)
C5—H51 0.952 C16—H161 0.998
C6—C7 1.403 (3) C16—H162 0.997
C6—H61 0.965 C17—C18 1.312 (4)
C7—N8 1.421 (3) C17—H171 0.974
C7—C21 1.391 (3) C18—H182 0.989
N8—N9 1.263 (2) C18—H181 0.978
N9—C10 1.423 (3) C19—C20 1.408 (3)
C10—C11 1.411 (3) C19—H191 0.959
C10—C20 1.382 (3) C20—H201 0.947
C11—C12 1.371 (3) C21—C22 1.382 (3)
C11—H111 0.977 C21—H211 0.945
C12—C13 1.384 (3) C22—H221 0.959
C12—H121 0.960
O1—C2—O3 123.76 (18) O14—C15—C16 106.04 (19)
O1—C2—C4 118.68 (17) O14—C15—H151 109.0
O3—C2—C4 117.56 (17) C16—C15—H151 111.8
C2—O3—H2 119.6 O14—C15—H152 108.8
C2—C4—C5 121.02 (17) C16—C15—H152 111.3
C2—C4—C22 119.37 (17) H151—C15—H152 109.7
C5—C4—C22 119.61 (18) C15—C16—C17 112.4 (2)
C4—C5—C6 120.55 (18) C15—C16—H161 106.1
C4—C5—H51 119.1 C17—C16—H161 112.0
C6—C5—H51 120.4 C15—C16—H162 111.1
C5—C6—C7 119.42 (18) C17—C16—H162 107.0
C5—C6—H61 120.9 H161—C16—H162 108.3
C7—C6—H61 119.7 C16—C17—C18 125.6 (3)
C6—C7—N8 125.56 (18) C16—C17—H171 116.3
C6—C7—C21 119.98 (18) C18—C17—H171 118.0
N8—C7—C21 114.44 (17) C17—C18—H182 117.5
C7—N8—N9 115.89 (16) C17—C18—H181 120.8
N8—N9—C10 112.56 (16) H182—C18—H181 121.7
N9—C10—C11 122.76 (18) C13—C19—C20 118.9 (2)
N9—C10—C20 118.03 (18) C13—C19—H191 122.3
C11—C10—C20 119.21 (19) C20—C19—H191 118.8
C10—C11—C12 120.7 (2) C19—C20—C10 120.4 (2)
C10—C11—H111 119.5 C19—C20—H201 120.6
C12—C11—H111 119.8 C10—C20—H201 118.9
C11—C12—C13 119.9 (2) C7—C21—C22 120.46 (18)
C11—C12—H121 120.8 C7—C21—H211 119.3
C13—C12—H121 119.3 C22—C21—H211 120.3
C12—C13—O14 114.02 (19) C4—C22—C21 119.94 (18)
C12—C13—C19 120.84 (19) C4—C22—H221 119.3
O14—C13—C19 125.1 (2) C21—C22—H221 120.7
C13—O14—C15 119.93 (18)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3—H2···O1i 0.87 1.76 2.612 (3) 166 (1)
C21—H211···O1ii 0.95 2.50 3.275 (3) 139 (1)

Symmetry codes: (i) −x, −y+3, −z; (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2476).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
  3. Centore, R. & Tuzi, A. (2003). Cryst. Eng. 6, 87–97.
  4. Chigrinov, V. G. (2005). ICOCN 2005 Digest, p. 285.
  5. Hegde, G. (2007). PhD thesis, University Malaysia Pahang, Malaysia.
  6. Lai, L.-L., Su, F.-Y., Lin, Y.-J., Ho, C.-H., Wang, E., Hung, C.-H., Liu, Y.-H. & Wang, Y. (2002). Helv. Chim. Acta, 85, 1517–1522.
  7. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  8. Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  9. Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.
  10. Yu, Q.-D. & Liu, Y.-Y. (2009). Acta Cryst. E65, o2326. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812038718/su2476sup1.cif

e-68-o2958-sup1.cif (17.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812038718/su2476Isup2.hkl

e-68-o2958-Isup2.hkl (174.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812038718/su2476Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES