Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Sep 22;68(Pt 10):o2975–o2976. doi: 10.1107/S1600536812038846

N-[2,6-Bis(1-methyl­eth­yl)phen­yl]pyridine-4-carboxamide

Baptiste Laramée a,*, Mihaela Cibian a, Garry S Hanan a
PMCID: PMC3470342  PMID: 23125755

Abstract

In the title compound, C18H22N2O, the dihedral angle between the benzene ring and the pyridine ring is 80.0 (1)°. In the crystal, N—H⋯O hydrogen bonds connect the mol­ecules into chains along the b axis. The packing also features C—H⋯O and C—H⋯N hydrogen bonds and C—H⋯π interactions, one directed to the benzene ring and the other to the center of the pyridine ring.

Related literature  

For general review and synthetic details about amide bond generation and application, see: Pattabiraman & Bode (2011). The title compound has not been reported in coordination chemistry, but complexes of similar ligands are known. For the use of such ligands in coordination chemistry, see: Baytekin et al. (2009); Hasegawa et al. (2007); Kumar et al. (2004). For related benzamide crystal structures, see: Saeed et al. (2010); Zhang & Zhao (2010); Roopan et al. (2009); Gowda et al. (2008). For background to the synthetic route, see: Boeré et al. (1998); Krajete et al. (2004); Schafer et al. (2011); Wallace et al. (1990). For a description of the Cambridge Structural Database, see: Allen (2002).graphic file with name e-68-o2975-scheme1.jpg

Experimental  

Crystal data  

  • C18H22N2O

  • M r = 282.38

  • Monoclinic, Inline graphic

  • a = 9.0994 (1) Å

  • b = 9.8039 (1) Å

  • c = 18.1882 (2) Å

  • β = 96.8650 (4)°

  • V = 1610.93 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.57 mm−1

  • T = 150 K

  • 0.20 × 0.12 × 0.12 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.895, T max = 0.935

  • 81057 measured reflections

  • 3126 independent reflections

  • 3000 reflections with I > 2σ(I)

  • R int = 0.025

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.097

  • S = 1.04

  • 3126 reflections

  • 198 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: UdMX (Maris, 2004).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812038846/nk2182sup1.cif

e-68-o2975-sup1.cif (26KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812038846/nk2182Isup2.hkl

e-68-o2975-Isup2.hkl (153.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812038846/nk2182Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the phenyl and pyridyl rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H20⋯O1i 0.872 (16) 1.970 (16) 2.7985 (11) 158.3 (13)
C3—H3⋯O1i 0.95 2.54 3.4500 (12) 161
C5—H5⋯N2ii 0.95 2.61 3.4983 (13) 155
C6—H6⋯Cg1iii 0.95 2.81 3.6467 150
C15—H15BCg2iv 0.98 2.97 3.7858 143

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors thank the Department of Chemistry of the Université de Montréal for access to the CCD facility. They thank Thierry Maris for useful crystallographic discussions and are grateful to the Université de Montréal for financial assistance.

supplementary crystallographic information

Comment

In the present work, N-[2,6-bis(1-methylethyl)phenyl]-4-pyridinecarboxamide has been synthesized as a potential ligand in coordination chemistry. The metal complexes of similar precursors are already known to catalyse hydroamination of aminoalkenes (Schafer et al. (2011)).

The molecular structure of the title compound is illustrated in Fig. 1. The bond distances are normal (Allen (2002)). The pyridyl ring is slightly tilted with respect to the central amide group at the angle of 5.7 (1)°, while the substituted phenyl ring is tilted by 79.8 (1)°.

Fig. 2 illustrates conventional intermolecular N—H···O hydrogen bonding, forming chains along b axis.

Experimental

N-[2,6-bis(1-methylethyl)phenyl]-4-pyridinecarboxamide was prepared by combining and modifying reported methods (Wallace et al. (1990); Boeré et al. (1998); Krajete et al. (2004)). Isonicotinic acid (8.00 g, 65.0 mmol) is refluxed in thionyl chloride (30.0 ml), under nitrogen atmosphere, for 3 h. The excess thionyl chloride is distilled off, to afford the corresponding isonicotinoyl chloride (HCl salt) as pale-yellow solid (not isolated). Dry dichloromethane (20.0 ml), dry pyridine (70.0 ml), and 2,6-diisopropylaniline (12.9 ml, 68.2 mmol) are added at 0°C (ice bath). The reaction mixture is left to heat to room temperature, and is subsequently refluxed for 2 h. The green-yellow suspension obtained is reduced to around 70 ml by evaporation under vacuum, and water (150 ml) is added. The green-yellow precipitate formed is recuperated as solid by filtration. Recrystallization from hot methanol at 4°C affords the desired N-(2,6-diisopropylphenyl)isonicotinamide as X-ray quality off-white needles, air dried (14.9 g, 52.7 mmol). Yield 81% 1H NMR (300 MHz, DMSO-d6) delta p.p.m. 10.05 (s, 1 H, NH) 8.80 (d, J=6 Hz, 2 H, H-py) 7.89 (d, J=6 Hz, 2 H, H-py) 7.28 - 7.37 (m, 1 H, p-H—Ph) 7.22 (d, J=8 Hz, 2 H, m-H—Ph) 3.05 (spt, J=7 Hz, 2 H, –CH-(CH3)2) 1.14 (dd, J=18, 7 Hz, 12 H, –CH-(CH3)2)

Refinement

The amide H atom was located in a difference Fourier map and refined freely. The other H atoms were positioned geometrically (C—H 0.95 Å) and included in the refinement in the riding model approximation; their temperature displacement parameters were set to 1.2 times the equivalent isotropic temperature factors of the parent site.

Figures

Fig. 1.

Fig. 1.

The molecular structure of N-[2,6-bis(1-methylethyl)phenyl]-4-pyridinecarboxamide, with atom labels and displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A view of the crystal packing of the title compound, showing one layer of molecules connected by N—H···O hydrogen bonds.

Crystal data

C18H22N2O F(000) = 608
Mr = 282.38 Dx = 1.164 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybc Cell parameters from 9664 reflections
a = 9.0994 (1) Å θ = 4.9–70.9°
b = 9.8039 (1) Å µ = 0.57 mm1
c = 18.1882 (2) Å T = 150 K
β = 96.8650 (4)° Block, colourless
V = 1610.93 (3) Å3 0.20 × 0.12 × 0.12 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 3126 independent reflections
Radiation source: fine-focus sealed tube 3000 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.025
φ and ω scans θmax = 71.3°, θmin = 4.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −11→11
Tmin = 0.895, Tmax = 0.935 k = −11→12
81057 measured reflections l = −22→22

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0527P)2 + 0.483P] where P = (Fo2 + 2Fc2)/3
3126 reflections (Δ/σ)max < 0.001
198 parameters Δρmax = 0.23 e Å3
0 restraints Δρmin = −0.17 e Å3

Special details

Experimental. X-ray crystallographic data for I were collected from a single-crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker Platform diffractometer, equipped with a Bruker SMART 4 K Charged-Coupled Device (CCD) Area Detector using the program APEX2 and a Nonius FR591 rotating anode equiped with a Montel 200 optics The crystal-to-detector distance was 5.0 cm, and the data collection was carried out in 512 x 512 pixel mode. The initial unit-cell parameters were determined by a least-squares fit of the angular setting of strong reflections, collected by a 10.0 degree scan in 33 frames over four different parts of the reciprocal space (132 frames total). One complete sphere of data was collected, to better than 0.80 Å resolution.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.56648 (10) 0.43259 (10) 0.26398 (5) 0.0201 (2)
C2 0.68103 (10) 0.39496 (10) 0.32743 (5) 0.0195 (2)
C3 0.70323 (11) 0.26362 (10) 0.35548 (5) 0.0225 (2)
H3 0.6495 0.1886 0.3328 0.027*
C4 0.80589 (11) 0.24503 (11) 0.41754 (6) 0.0256 (2)
H4 0.8212 0.1549 0.4361 0.031*
C5 0.86349 (11) 0.47088 (11) 0.42454 (6) 0.0258 (2)
H5 0.9188 0.5440 0.4483 0.031*
C6 0.76529 (11) 0.49972 (10) 0.36234 (6) 0.0236 (2)
H6 0.7556 0.5902 0.3437 0.028*
C7 0.35237 (11) 0.35774 (10) 0.18088 (5) 0.0215 (2)
C8 0.22392 (11) 0.40448 (11) 0.20807 (6) 0.0253 (2)
C9 0.09606 (12) 0.41663 (12) 0.15761 (6) 0.0308 (3)
H9 0.0067 0.4474 0.1743 0.037*
C10 0.09807 (12) 0.38435 (12) 0.08382 (6) 0.0322 (3)
H10 0.0099 0.3923 0.0504 0.039*
C11 0.22720 (13) 0.34047 (11) 0.05807 (6) 0.0295 (2)
H11 0.2270 0.3205 0.0069 0.035*
C12 0.35778 (12) 0.32520 (10) 0.10616 (6) 0.0247 (2)
C13 0.49893 (12) 0.26737 (11) 0.08127 (6) 0.0297 (2)
H13 0.5385 0.1989 0.1193 0.036*
C14 0.61908 (13) 0.37664 (13) 0.07854 (6) 0.0345 (3)
H14A 0.5906 0.4386 0.0370 0.052*
H14B 0.7133 0.3326 0.0719 0.052*
H14C 0.6301 0.4284 0.1250 0.052*
C15 0.47312 (15) 0.19216 (13) 0.00699 (7) 0.0406 (3)
H15A 0.3950 0.1239 0.0089 0.061*
H15B 0.5648 0.1468 −0.0027 0.061*
H15C 0.4431 0.2577 −0.0327 0.061*
C16 0.21896 (12) 0.43226 (12) 0.29009 (6) 0.0307 (3)
H16 0.3236 0.4405 0.3138 0.037*
C17 0.14987 (15) 0.31045 (14) 0.32582 (7) 0.0400 (3)
H17A 0.0468 0.2997 0.3040 0.060*
H17B 0.1532 0.3261 0.3792 0.060*
H17C 0.2054 0.2275 0.3172 0.060*
C18 0.14025 (15) 0.56513 (13) 0.30479 (7) 0.0404 (3)
H18A 0.1874 0.6410 0.2815 0.061*
H18B 0.1467 0.5807 0.3583 0.061*
H18C 0.0360 0.5590 0.2840 0.061*
N1 0.48109 (9) 0.33206 (9) 0.23309 (5) 0.02100 (19)
H20 0.4927 (15) 0.2479 (16) 0.2480 (8) 0.034 (3)*
N2 0.88469 (10) 0.34533 (9) 0.45299 (5) 0.0264 (2)
O1 0.55121 (8) 0.55210 (7) 0.24345 (4) 0.02682 (19)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0212 (5) 0.0163 (5) 0.0221 (5) 0.0015 (4) 0.0004 (4) −0.0016 (4)
C2 0.0191 (4) 0.0190 (5) 0.0201 (5) 0.0019 (4) 0.0011 (4) −0.0017 (4)
C3 0.0256 (5) 0.0185 (5) 0.0228 (5) −0.0001 (4) 0.0000 (4) −0.0015 (4)
C4 0.0301 (5) 0.0213 (5) 0.0244 (5) 0.0025 (4) −0.0011 (4) 0.0021 (4)
C5 0.0250 (5) 0.0240 (5) 0.0270 (5) −0.0004 (4) −0.0032 (4) −0.0042 (4)
C6 0.0240 (5) 0.0182 (5) 0.0275 (5) 0.0010 (4) −0.0015 (4) −0.0013 (4)
C7 0.0236 (5) 0.0148 (4) 0.0243 (5) −0.0028 (4) −0.0043 (4) 0.0012 (4)
C8 0.0244 (5) 0.0222 (5) 0.0281 (5) −0.0029 (4) −0.0020 (4) 0.0003 (4)
C9 0.0232 (5) 0.0303 (6) 0.0371 (6) −0.0009 (4) −0.0038 (4) 0.0014 (5)
C10 0.0305 (5) 0.0279 (6) 0.0341 (6) −0.0044 (4) −0.0126 (4) 0.0042 (4)
C11 0.0404 (6) 0.0224 (5) 0.0231 (5) −0.0049 (4) −0.0067 (4) 0.0011 (4)
C12 0.0323 (5) 0.0162 (5) 0.0247 (5) −0.0032 (4) −0.0007 (4) 0.0014 (4)
C13 0.0370 (6) 0.0247 (5) 0.0277 (5) 0.0010 (4) 0.0044 (4) 0.0005 (4)
C14 0.0360 (6) 0.0361 (6) 0.0317 (6) −0.0025 (5) 0.0051 (5) −0.0008 (5)
C15 0.0519 (7) 0.0347 (7) 0.0369 (6) −0.0063 (6) 0.0126 (5) −0.0088 (5)
C16 0.0240 (5) 0.0382 (6) 0.0294 (6) −0.0007 (4) 0.0007 (4) −0.0035 (5)
C17 0.0483 (7) 0.0395 (7) 0.0326 (6) 0.0046 (6) 0.0063 (5) 0.0054 (5)
C18 0.0472 (7) 0.0360 (7) 0.0402 (7) −0.0020 (5) 0.0144 (5) −0.0038 (5)
N1 0.0231 (4) 0.0146 (4) 0.0236 (4) −0.0002 (3) −0.0040 (3) 0.0009 (3)
N2 0.0271 (4) 0.0266 (5) 0.0241 (4) 0.0023 (4) −0.0030 (3) −0.0008 (3)
O1 0.0308 (4) 0.0150 (4) 0.0317 (4) 0.0002 (3) −0.0081 (3) 0.0008 (3)

Geometric parameters (Å, º)

C1—O1 1.2325 (12) C11—C12 1.3968 (15)
C1—N1 1.3366 (13) C11—H11 0.9500
C1—C2 1.5057 (13) C12—C13 1.5215 (15)
C2—C6 1.3891 (14) C13—C15 1.5324 (16)
C2—C3 1.3908 (14) C13—C14 1.5357 (16)
C3—C4 1.3885 (14) C13—H13 1.0000
C3—H3 0.9500 C14—H14A 0.9800
C4—N2 1.3364 (14) C14—H14B 0.9800
C4—H4 0.9500 C14—H14C 0.9800
C5—N2 1.3402 (14) C15—H15A 0.9800
C5—C6 1.3845 (14) C15—H15B 0.9800
C5—H5 0.9500 C15—H15C 0.9800
C6—H6 0.9500 C16—C18 1.5256 (17)
C7—C8 1.3996 (15) C16—C17 1.5302 (17)
C7—C12 1.4025 (14) C16—H16 1.0000
C7—N1 1.4392 (12) C17—H17A 0.9800
C8—C9 1.3981 (14) C17—H17B 0.9800
C8—C16 1.5224 (15) C17—H17C 0.9800
C9—C10 1.3812 (17) C18—H18A 0.9800
C9—H9 0.9500 C18—H18B 0.9800
C10—C11 1.3844 (17) C18—H18C 0.9800
C10—H10 0.9500 N1—H20 0.872 (16)
O1—C1—N1 122.33 (9) C15—C13—C14 109.99 (9)
O1—C1—C2 120.52 (9) C12—C13—H13 107.0
N1—C1—C2 117.12 (8) C15—C13—H13 107.0
C6—C2—C3 117.96 (9) C14—C13—H13 107.0
C6—C2—C1 117.57 (9) C13—C14—H14A 109.5
C3—C2—C1 124.40 (9) C13—C14—H14B 109.5
C4—C3—C2 118.28 (9) H14A—C14—H14B 109.5
C4—C3—H3 120.9 C13—C14—H14C 109.5
C2—C3—H3 120.9 H14A—C14—H14C 109.5
N2—C4—C3 124.45 (9) H14B—C14—H14C 109.5
N2—C4—H4 117.8 C13—C15—H15A 109.5
C3—C4—H4 117.8 C13—C15—H15B 109.5
N2—C5—C6 123.51 (10) H15A—C15—H15B 109.5
N2—C5—H5 118.2 C13—C15—H15C 109.5
C6—C5—H5 118.2 H15A—C15—H15C 109.5
C5—C6—C2 119.31 (9) H15B—C15—H15C 109.5
C5—C6—H6 120.3 C8—C16—C18 113.21 (10)
C2—C6—H6 120.3 C8—C16—C17 109.78 (10)
C8—C7—C12 122.98 (9) C18—C16—C17 111.51 (10)
C8—C7—N1 118.18 (9) C8—C16—H16 107.4
C12—C7—N1 118.65 (9) C18—C16—H16 107.4
C9—C8—C7 117.42 (10) C17—C16—H16 107.4
C9—C8—C16 120.54 (10) C16—C17—H17A 109.5
C7—C8—C16 121.91 (9) C16—C17—H17B 109.5
C10—C9—C8 120.78 (10) H17A—C17—H17B 109.5
C10—C9—H9 119.6 C16—C17—H17C 109.5
C8—C9—H9 119.6 H17A—C17—H17C 109.5
C9—C10—C11 120.68 (10) H17B—C17—H17C 109.5
C9—C10—H10 119.7 C16—C18—H18A 109.5
C11—C10—H10 119.7 C16—C18—H18B 109.5
C10—C11—C12 120.95 (10) H18A—C18—H18B 109.5
C10—C11—H11 119.5 C16—C18—H18C 109.5
C12—C11—H11 119.5 H18A—C18—H18C 109.5
C11—C12—C7 117.17 (10) H18B—C18—H18C 109.5
C11—C12—C13 122.60 (10) C1—N1—C7 122.32 (8)
C7—C12—C13 120.11 (9) C1—N1—H20 121.6 (9)
C12—C13—C15 113.31 (10) C7—N1—H20 115.5 (9)
C12—C13—C14 112.29 (9) C4—N2—C5 116.45 (9)
O1—C1—C2—C6 1.35 (14) C10—C11—C12—C13 175.36 (10)
N1—C1—C2—C6 −176.83 (9) C8—C7—C12—C11 −0.33 (15)
O1—C1—C2—C3 178.24 (9) N1—C7—C12—C11 174.69 (9)
N1—C1—C2—C3 0.05 (14) C8—C7—C12—C13 −176.56 (9)
C6—C2—C3—C4 1.29 (14) N1—C7—C12—C13 −1.54 (14)
C1—C2—C3—C4 −175.58 (9) C11—C12—C13—C15 −16.18 (15)
C2—C3—C4—N2 0.63 (16) C7—C12—C13—C15 159.84 (10)
N2—C5—C6—C2 1.24 (16) C11—C12—C13—C14 109.19 (11)
C3—C2—C6—C5 −2.17 (15) C7—C12—C13—C14 −74.79 (12)
C1—C2—C6—C5 174.92 (9) C9—C8—C16—C18 −48.05 (14)
C12—C7—C8—C9 0.93 (15) C7—C8—C16—C18 136.15 (11)
N1—C7—C8—C9 −174.12 (9) C9—C8—C16—C17 77.27 (13)
C12—C7—C8—C16 176.85 (10) C7—C8—C16—C17 −98.53 (12)
N1—C7—C8—C16 1.81 (15) O1—C1—N1—C7 −8.80 (15)
C7—C8—C9—C10 −0.44 (16) C2—C1—N1—C7 169.34 (8)
C16—C8—C9—C10 −176.43 (10) C8—C7—N1—C1 −76.45 (12)
C8—C9—C10—C11 −0.62 (17) C12—C7—N1—C1 108.28 (11)
C9—C10—C11—C12 1.25 (17) C3—C4—N2—C5 −1.59 (16)
C10—C11—C12—C7 −0.76 (15) C6—C5—N2—C4 0.63 (15)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the phenyl and pyridyl rings, respectively.

D—H···A D—H H···A D···A D—H···A
N1—H20···O1i 0.872 (16) 1.970 (16) 2.7985 (11) 158.3 (13)
C3—H3···O1i 0.95 2.54 3.4500 (12) 161
C5—H5···N2ii 0.95 2.61 3.4983 (13) 155
C6—H6···Cg1iii 0.95 2.81 3.6467 150
C15—H15B···Cg2iv 0.98 2.97 3.7858 143

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x+2, −y+1, −z+1; (iii) −x+1, y+1/2, −z+1/2; (iv) x, −y−1/2, z−3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2182).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Baytekin, T. H., Baytekin, B., Schulz, A., Springer, A., Gross, T., Unger, W., Artamonova, M., Schlecht, S., Lentz, D. & Schalley, A. C. (2009). Chem. Mater. 21, 2980–2992.
  3. Boeré, R. T., Klassen, V. & Wolmershäuser, G. (1998). J. Chem. Soc. Dalton. Trans. pp. 4147–4154.
  4. Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1299. [DOI] [PMC free article] [PubMed]
  6. Hasegawa, S., Horike, S., Matsuda, R., Furukawa, S., Mochizuki, K., Kinoshita, Y. & Kitagawa, S. (2007). J. Am. Chem. Soc. 129, 2607–2614. [DOI] [PubMed]
  7. Krajete, A., Steiner, G., Kopacka, H., Ongania, K.-H., Wurst, K., Kristen, M., Preishuber-Pflügl, P. & Bildstein, B. (2004). Eur. J. Inorg. Chem. pp. 1740–1752.
  8. Kumar, K. D., Jose, A. D., Dastidar, P. & Das, A. (2004). Langmuir, 20, 10413–10418. [DOI] [PubMed]
  9. Maris, T. (2004). UdMX Université de Montreal, Montréal.
  10. Pattabiraman, V. R. & Bode, J. W. (2011). Nature (London), 480, 471–479. [DOI] [PubMed]
  11. Roopan, S. M., Hathwar, V. R., Kumar, A. S., Malathi, N. & Khan, F. N. (2009). Acta Cryst. E65, o571. [DOI] [PMC free article] [PubMed]
  12. Saeed, A., Khera, R. A., Siddiq, M. & Simpson, J. (2010). Acta Cryst. E66, o19. [DOI] [PMC free article] [PubMed]
  13. Schafer, L. L., Platel, R. H. & Leitch, D. C. (2011). J. Am. Chem. Soc. 133, 15453–15463. [DOI] [PubMed]
  14. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Wallace, R. G., Barker, J. M. & Wood, M. L. (1990). Synthesis, 12, 1143–1144.
  17. Zhang, Y. & Zhao, X.-L. (2010). Acta Cryst. E66, o1898. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812038846/nk2182sup1.cif

e-68-o2975-sup1.cif (26KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812038846/nk2182Isup2.hkl

e-68-o2975-Isup2.hkl (153.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812038846/nk2182Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES