Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Sep 22;68(Pt 10):o2985–o2986. doi: 10.1107/S1600536812039414

(2E)-2-[1-(2-Hy­droxy-4-meth­oxy­phenyl)ethyl­idene]-N-phenyl­hydrazine­carbox­amide monohydrate

C F Annie a, Jinsa Mary Jacob a, M Sithambaresan b,*, M R Prathapachandra Kurup a
PMCID: PMC3470348  PMID: 23125761

Abstract

The title compound, C16H17N3O3·H2O, exists in the E conformation with respect to the azomethine C=N double bond. While the phenyl ring is almost coplanar with the central hydrazinecarboxamide group [dihedral angle = 14.18 (11)°], it is twisted slightly with respect to the other aromatic ring in the mol­ecule, with a dihedral angle of 22.88 (13)°. The packing is dominated by O—H⋯O, N—H⋯O and C—H⋯O hydrogen-bond inter­actions, forming a three-dimensional supra­molecular structure which is augmented by two types of C—H⋯π inter­actions. An intramolecular O—H⋯N interaction is also present in the molecule.

Related literature  

For the application of hydrazinecarboxamides as enzyme inhibitors and as a source of self-complementary bidirectional hydrogen-bonding motifs, see: Lam et al. (1994); Chorev & Goodman (1993); Zhao et al. (1990). For the synthesis of related compounds, see: Sreekanth et al. (2004). For standard bond-length data, see: Allen et al. (1987). For related structures, see: Sithambaresan & Kurup (2011); Siji et al. (2010).graphic file with name e-68-o2985-scheme1.jpg

Experimental  

Crystal data  

  • C16H17N3O3·H2O

  • M r = 317.34

  • Monoclinic, Inline graphic

  • a = 12.4020 (18) Å

  • b = 13.7808 (19) Å

  • c = 9.3919 (10) Å

  • β = 96.813 (7)°

  • V = 1593.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.50 × 0.30 × 0.25 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS (Bruker, 2004) T min = 0.966, T max = 0.976

  • 12097 measured reflections

  • 2809 independent reflections

  • 1807 reflections with I > 2σ(I)

  • R int = 0.083

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.172

  • S = 1.02

  • 2809 reflections

  • 230 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812039414/bv2210sup1.cif

e-68-o2985-sup1.cif (25KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812039414/bv2210Isup2.hkl

e-68-o2985-Isup2.hkl (137.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812039414/bv2210Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2′⋯N1 0.88 (1) 1.71 (2) 2.526 (2) 154 (3)
N2—H2N⋯O1S i 0.88 (1) 2.08 (1) 2.900 (3) 154 (2)
N3—H3⋯O1S i 0.88 (1) 2.11 (2) 2.918 (3) 153 (3)
O1S—H1A⋯O2 0.86 (2) 2.12 (2) 2.925 (3) 156 (3)
O1S—H1B⋯O3ii 0.84 (2) 1.90 (2) 2.730 (3) 174 (3)
C8—H8C⋯O3iii 0.96 2.51 3.457 (3) 167
C11—H11⋯O3 0.93 2.31 2.881 (3) 119
C13—H13⋯O1iv 0.93 2.60 3.489 (3) 160
C8—H8ACg1v 0.96 2.92 3.543 (3) 123
C16—H16CCg1vi 0.96 2.79 3.645 (4) 148

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

CFA is grateful to the University Grants Commission, New Delhi, India, for the award of a Teacher Fellowship. The authors are grateful to the Sophisticated Analytical Instruments Facility, Cochin University of Science and Technology, Kochi 22, India, for the single-crystal X-ray diffraction measurements.

supplementary crystallographic information

Comment

Hydrazinecarboxamides have gained considerable importance in recent years in the design of enzyme inhibitors (Lam et al., 1994), as replacement for the amide (–CO–NH–) bond in peptidomimetics (Chorev & Goodman, 1993) and as sources of self-complementary bidirectional hydrogen bonding motif in supramolecular chemistry (Zhao et al., 1990). As a continuous work on the hydrazinecarboxamide compounds, a new hydrazinecarboxamide compound, (2E)-2-[1-(2-hydroxy-4-methoxyphenyl)ethylidene]-N-phenylhydrazinecarboxamide monohydrate, was prepared and structurally characterized. The ORTEP view of the title compound is shown in Fig. 1.

The compound crystallizes in monoclinic space group P21/c. The molecule adopts an E configuration with respect to C7═N1 bond (Sithambaresan & Kurup, 2011; Siji et al., 2010) and it exists in amido form with C9═O3 bond length of 1.212 (3) Å which is very close to a formal C═O bond length [1.21 Å] (Allen et al., 1987). The phenyl ring is almost coplanar with the central hydrazinecarboxamide moiety with maximum deviation of -0.060 (3) Å for the C1 atom. The two aromatic rings are twisted with dihedral angle of 22.88 (13)°.

While the intramolecular O—H···N and C—H···O hydrogen bonds increase the rigidity of the molecule, intermolecular O—H···O, N—H···O, C—H···O hydrogen bonding interactions (Table 1) links the adjacent molecules directly and through water molecule forming an infinite three-dimensional supramolecular structure in the lattice (Fig. 2). Phenylhydrazinecarboxamide molecules also interact through two types of C—H···π interactions (Fig. 3) with the H···π distances of 2.92 and 2.79 Å and very weak π–π interactions with a shortest centroid–centroid distance of 5.0552 (18) Å. The parallel arrangement of the molecules along b axis is shown in Fig. 4.

Experimental

The title compound was prepared by adapting a reported procedure (Sreekanth et al., 2004). To a warm ethanolic solution of N-phenylsemicarbazide (0.302 g, 2 mmol), an ethanolic solution of 1-(2-hydroxy-4-methoxyphenyl)ethanone (0.332 g, 2 mmol) was added and the resulting solution was refluxed for 3 h after adding three drops of glacial acetic acid. On cooling the solution colorless crystals were separated out. Single crystals suitable for X-ray diffraction studies were obtained by slow evaporation from its ethanolic solution.

Refinement

All H atoms on C were placed in calculated positions, guided by difference maps, with C—H bond distances 0.93–0.96 Å. H atoms were assigned as Uiso = 1.2Ueq. H1A and H1B atoms of O1S were located from difference maps and restrained using DFIX and DANG instructions with O—H = 0.86 (2) and H···H = 1.36 (2) Å respectively. N2—H2N, N3—H3 and O2—H2' atoms were located from difference maps and restrained using DFIX instructions with bond distance of 0.88 (1) Å.

Figures

Fig. 1.

Fig. 1.

ORTEP view of the compound, drawn with 50% probability displacement ellipsoids for the non-H atoms.

Fig. 2.

Fig. 2.

Graphical representation showing three-dimensional supramolecular hydrogen bonding network in the crystal structure of C16H17N3O3.H2O.

Fig. 3.

Fig. 3.

C—H···π interactions present in the compound C16H17N3O3.H2O.

Fig. 4.

Fig. 4.

Packing diagram of the compound showing the parallel arrangement of the molecules along b axis.

Crystal data

C16H17N3O3·H2O F(000) = 672
Mr = 317.34 Dx = 1.322 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2335 reflections
a = 12.4020 (18) Å θ = 2.6–28.5°
b = 13.7808 (19) Å µ = 0.10 mm1
c = 9.3919 (10) Å T = 296 K
β = 96.813 (7)° Block, light yellow
V = 1593.8 (4) Å3 0.50 × 0.30 × 0.25 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer 2809 independent reflections
Radiation source: fine-focus sealed tube 1807 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.083
Detector resolution: 8.33 pixels mm-1 θmax = 25.0°, θmin = 2.6°
ω and φ scans h = −14→14
Absorption correction: multi-scan (SADABS (Bruker, 2004) k = −15→16
Tmin = 0.966, Tmax = 0.976 l = −11→11
12097 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0711P)2 + 0.2072P] where P = (Fo2 + 2Fc2)/3
2809 reflections (Δ/σ)max = 0.002
230 parameters Δρmax = 0.22 e Å3
6 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.00919 (16) 0.45528 (15) 0.7326 (2) 0.0873 (6)
O2 0.28586 (14) 0.46101 (12) 0.42646 (18) 0.0649 (5)
O3 0.48111 (13) 0.39835 (12) 0.18956 (17) 0.0673 (5)
O1S 0.46607 (17) 0.43758 (13) 0.6547 (2) 0.0782 (6)
N1 0.34225 (14) 0.30092 (14) 0.32720 (19) 0.0550 (5)
N2 0.41511 (16) 0.25435 (15) 0.2542 (2) 0.0579 (5)
N3 0.55055 (16) 0.25697 (15) 0.1149 (2) 0.0595 (5)
C1 0.1243 (2) 0.26313 (19) 0.5438 (3) 0.0665 (7)
H1 0.1149 0.1964 0.5341 0.080*
C2 0.0592 (2) 0.3136 (2) 0.6243 (3) 0.0721 (7)
H2 0.0057 0.2814 0.6674 0.087*
C3 0.07267 (18) 0.41231 (19) 0.6422 (3) 0.0632 (6)
C4 0.14813 (18) 0.46014 (18) 0.5735 (2) 0.0605 (6)
H4 0.1560 0.5270 0.5831 0.073*
C5 0.21263 (16) 0.40877 (17) 0.4898 (2) 0.0525 (6)
C6 0.20481 (17) 0.30831 (17) 0.4753 (2) 0.0527 (6)
C7 0.27824 (18) 0.25124 (17) 0.3976 (2) 0.0549 (6)
C8 0.2817 (2) 0.14371 (19) 0.4067 (3) 0.0725 (7)
H8A 0.2911 0.1172 0.3145 0.109*
H8B 0.2149 0.1202 0.4363 0.109*
H8C 0.3413 0.1242 0.4754 0.109*
C9 0.48365 (17) 0.31043 (17) 0.1865 (2) 0.0528 (5)
C10 0.63021 (18) 0.29082 (16) 0.0333 (2) 0.0544 (6)
C11 0.6348 (2) 0.38417 (19) −0.0166 (3) 0.0703 (7)
H11 0.5839 0.4297 0.0053 0.084*
C12 0.7142 (2) 0.4102 (2) −0.0987 (3) 0.0797 (8)
H12 0.7167 0.4735 −0.1323 0.096*
C13 0.7897 (2) 0.3447 (2) −0.1319 (3) 0.0858 (9)
H13 0.8439 0.3628 −0.1870 0.103*
C14 0.7843 (3) 0.2526 (3) −0.0828 (4) 0.0974 (11)
H14 0.8355 0.2074 −0.1046 0.117*
C15 0.7047 (2) 0.2249 (2) −0.0017 (3) 0.0787 (8)
H15 0.7016 0.1611 0.0295 0.094*
C16 0.0259 (3) 0.5537 (2) 0.7664 (3) 0.0955 (10)
H16A 0.1001 0.5636 0.8055 0.143*
H16B −0.0211 0.5728 0.8357 0.143*
H16C 0.0100 0.5920 0.6812 0.143*
H1A 0.424 (3) 0.459 (3) 0.583 (3) 0.141 (16)*
H1B 0.486 (3) 0.4887 (17) 0.698 (3) 0.109 (12)*
H3 0.548 (2) 0.1938 (8) 0.126 (3) 0.089 (9)*
H2' 0.318 (2) 0.4169 (16) 0.378 (3) 0.094 (10)*
H2N 0.4174 (19) 0.1907 (8) 0.245 (2) 0.063 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0817 (13) 0.0877 (15) 0.1018 (14) 0.0039 (10) 0.0499 (10) 0.0000 (11)
O2 0.0673 (11) 0.0548 (11) 0.0776 (11) −0.0040 (8) 0.0296 (8) 0.0036 (8)
O3 0.0756 (11) 0.0487 (10) 0.0802 (12) 0.0015 (8) 0.0203 (8) −0.0082 (8)
O1S 0.0866 (13) 0.0528 (11) 0.0914 (14) −0.0062 (10) −0.0048 (11) −0.0055 (10)
N1 0.0542 (11) 0.0577 (13) 0.0540 (11) 0.0038 (9) 0.0097 (8) −0.0022 (8)
N2 0.0619 (12) 0.0503 (13) 0.0637 (12) 0.0046 (9) 0.0178 (9) −0.0037 (9)
N3 0.0641 (12) 0.0469 (12) 0.0710 (13) 0.0047 (9) 0.0225 (10) −0.0005 (9)
C1 0.0627 (15) 0.0601 (16) 0.0788 (17) −0.0095 (12) 0.0176 (13) 0.0023 (12)
C2 0.0637 (15) 0.0726 (19) 0.0847 (18) −0.0111 (13) 0.0283 (13) 0.0069 (14)
C3 0.0536 (14) 0.0717 (18) 0.0668 (15) 0.0032 (12) 0.0176 (11) 0.0055 (12)
C4 0.0558 (13) 0.0601 (15) 0.0673 (15) 0.0026 (11) 0.0138 (11) 0.0012 (11)
C5 0.0459 (12) 0.0585 (15) 0.0536 (13) −0.0029 (10) 0.0077 (9) 0.0074 (10)
C6 0.0494 (12) 0.0576 (15) 0.0505 (12) −0.0026 (10) 0.0037 (9) 0.0044 (10)
C7 0.0519 (13) 0.0595 (15) 0.0518 (13) −0.0010 (10) −0.0001 (10) 0.0014 (10)
C8 0.0812 (18) 0.0603 (16) 0.0766 (17) −0.0002 (13) 0.0116 (13) −0.0021 (12)
C9 0.0521 (13) 0.0493 (14) 0.0560 (14) 0.0013 (10) 0.0023 (10) −0.0033 (10)
C10 0.0536 (13) 0.0552 (15) 0.0548 (13) 0.0017 (10) 0.0076 (10) −0.0023 (10)
C11 0.0765 (17) 0.0573 (16) 0.0808 (17) 0.0057 (13) 0.0251 (13) 0.0006 (13)
C12 0.097 (2) 0.0648 (18) 0.0831 (19) −0.0106 (15) 0.0328 (15) 0.0019 (13)
C13 0.0797 (19) 0.095 (2) 0.089 (2) −0.0092 (16) 0.0368 (15) −0.0005 (17)
C14 0.093 (2) 0.089 (2) 0.120 (3) 0.0294 (17) 0.0550 (19) 0.0167 (18)
C15 0.0864 (19) 0.0643 (18) 0.091 (2) 0.0191 (14) 0.0335 (15) 0.0115 (14)
C16 0.100 (2) 0.091 (3) 0.103 (2) 0.0114 (18) 0.0410 (18) −0.0163 (18)

Geometric parameters (Å, º)

O1—C3 1.360 (3) C4—H4 0.9300
O1—C16 1.403 (3) C5—C6 1.393 (3)
O2—C5 1.351 (3) C6—C7 1.462 (3)
O2—H2' 0.881 (10) C7—C8 1.485 (3)
O3—C9 1.212 (3) C8—H8A 0.9600
O1S—H1A 0.857 (18) C8—H8B 0.9600
O1S—H1B 0.837 (18) C8—H8C 0.9600
N1—C7 1.289 (3) C10—C15 1.363 (3)
N1—N2 1.358 (3) C10—C11 1.373 (3)
N2—C9 1.361 (3) C11—C12 1.368 (3)
N2—H2N 0.882 (10) C11—H11 0.9300
N3—C9 1.348 (3) C12—C13 1.363 (4)
N3—C10 1.400 (3) C12—H12 0.9300
N3—H3 0.878 (10) C13—C14 1.354 (4)
C1—C2 1.360 (4) C13—H13 0.9300
C1—C6 1.397 (3) C14—C15 1.370 (4)
C1—H1 0.9300 C14—H14 0.9300
C2—C3 1.379 (4) C15—H15 0.9300
C2—H2 0.9300 C16—H16A 0.9600
C3—C4 1.368 (3) C16—H16B 0.9600
C4—C5 1.381 (3) C16—H16C 0.9600
C3—O1—C16 118.8 (2) C7—C8—H8B 109.5
C5—O2—H2' 103 (2) H8A—C8—H8B 109.5
H1A—O1S—H1B 102 (3) C7—C8—H8C 109.5
C7—N1—N2 119.7 (2) H8A—C8—H8C 109.5
N1—N2—C9 117.21 (19) H8B—C8—H8C 109.5
N1—N2—H2N 123.3 (16) O3—C9—N3 125.3 (2)
C9—N2—H2N 119.4 (16) O3—C9—N2 122.5 (2)
C9—N3—C10 127.4 (2) N3—C9—N2 112.2 (2)
C9—N3—H3 117 (2) C15—C10—C11 119.0 (2)
C10—N3—H3 115 (2) C15—C10—N3 116.9 (2)
C2—C1—C6 122.1 (2) C11—C10—N3 124.0 (2)
C2—C1—H1 118.9 C12—C11—C10 120.0 (2)
C6—C1—H1 118.9 C12—C11—H11 120.0
C1—C2—C3 120.0 (2) C10—C11—H11 120.0
C1—C2—H2 120.0 C13—C12—C11 121.0 (3)
C3—C2—H2 120.0 C13—C12—H12 119.5
O1—C3—C4 124.3 (2) C11—C12—H12 119.5
O1—C3—C2 115.8 (2) C14—C13—C12 118.6 (3)
C4—C3—C2 119.9 (2) C14—C13—H13 120.7
C3—C4—C5 119.8 (2) C12—C13—H13 120.7
C3—C4—H4 120.1 C13—C14—C15 121.2 (3)
C5—C4—H4 120.1 C13—C14—H14 119.4
O2—C5—C4 116.3 (2) C15—C14—H14 119.4
O2—C5—C6 121.9 (2) C10—C15—C14 120.1 (3)
C4—C5—C6 121.8 (2) C10—C15—H15 119.9
C5—C6—C1 116.3 (2) C14—C15—H15 119.9
C5—C6—C7 122.9 (2) O1—C16—H16A 109.5
C1—C6—C7 120.8 (2) O1—C16—H16B 109.5
N1—C7—C6 115.4 (2) H16A—C16—H16B 109.5
N1—C7—C8 123.0 (2) O1—C16—H16C 109.5
C6—C7—C8 121.6 (2) H16A—C16—H16C 109.5
C7—C8—H8A 109.5 H16B—C16—H16C 109.5
C7—N1—N2—C9 −177.41 (18) C5—C6—C7—N1 −8.6 (3)
C6—C1—C2—C3 −1.0 (4) C1—C6—C7—N1 173.59 (19)
C16—O1—C3—C4 −4.5 (4) C5—C6—C7—C8 168.3 (2)
C16—O1—C3—C2 174.0 (2) C1—C6—C7—C8 −9.5 (3)
C1—C2—C3—O1 −175.5 (2) C10—N3—C9—O3 1.1 (4)
C1—C2—C3—C4 3.0 (4) C10—N3—C9—N2 179.5 (2)
O1—C3—C4—C5 176.5 (2) N1—N2—C9—O3 −0.1 (3)
C2—C3—C4—C5 −1.8 (4) N1—N2—C9—N3 −178.56 (18)
C3—C4—C5—O2 −179.4 (2) C9—N3—C10—C15 165.1 (2)
C3—C4—C5—C6 −1.4 (3) C9—N3—C10—C11 −17.3 (4)
O2—C5—C6—C1 −178.8 (2) C15—C10—C11—C12 −0.8 (4)
C4—C5—C6—C1 3.3 (3) N3—C10—C11—C12 −178.4 (2)
O2—C5—C6—C7 3.4 (3) C10—C11—C12—C13 −0.2 (4)
C4—C5—C6—C7 −174.6 (2) C11—C12—C13—C14 0.5 (5)
C2—C1—C6—C5 −2.1 (3) C12—C13—C14—C15 0.1 (5)
C2—C1—C6—C7 175.8 (2) C11—C10—C15—C14 1.5 (4)
N2—N1—C7—C6 178.56 (17) N3—C10—C15—C14 179.2 (3)
N2—N1—C7—C8 1.7 (3) C13—C14—C15—C10 −1.2 (5)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C1–C6 ring.

D—H···A D—H H···A D···A D—H···A
O2—H2′···N1 0.88 (1) 1.71 (2) 2.526 (2) 154 (3)
N2—H2N···O1Si 0.88 (1) 2.08 (1) 2.900 (3) 154 (2)
N3—H3···O1Si 0.88 (1) 2.11 (2) 2.918 (3) 153 (3)
O1S—H1A···O2 0.86 (2) 2.12 (2) 2.925 (3) 156 (3)
O1S—H1B···O3ii 0.84 (2) 1.90 (2) 2.730 (3) 174 (3)
C8—H8C···O3iii 0.96 2.51 3.457 (3) 167
C11—H11···O3 0.93 2.31 2.881 (3) 119
C13—H13···O1iv 0.93 2.60 3.489 (3) 160
C8—H8A···Cg1v 0.96 2.92 3.543 (3) 123
C16—H16C···Cg1vi 0.96 2.79 3.645 (4) 148

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, −y+1, −z+1; (iii) x, −y+1/2, z+1/2; (iv) x+1, y, z−1; (v) x, −y−1/2, z−3/2; (vi) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2210).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Brandenburg, K. (2010). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2004). SADABS, APEX2, XPREP and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chorev, M. & Goodman, M. (1993). Acc. Chem. Res. 26, 266–273.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Lam, P. Y. S., Jadhav, P. K., Eyermann, C. J., Hodge, C. N., Ru, Y., Bacheler, L. T., Meek, J. L., Otto, M. J., Rayner, M. M., Wong, Y. N., Chang, C. H., Weber, P. C., Jackson, D. A., Sharpe, T. R. & Viitanen, E. S. (1994). Science, 263, 380–384. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Siji, V. L., Sudarsanakumar, M. R. & Suma, S. (2010). Polyhedron, 29, 2035–2040.
  9. Sithambaresan, M. & Kurup, M. R. P. (2011). Acta Cryst. E67, o2972. [DOI] [PMC free article] [PubMed]
  10. Sreekanth, A., Kala, U. L., Nayar, C. R. & Kurup, M. R. P. (2004). Polyhedron, 23, 41–47.
  11. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  12. Zhao, X., Chang, Y. L., Fowler, F. W. & Lauher, J. W. (1990). J. Am. Chem. Soc. 112, 6627–6634.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812039414/bv2210sup1.cif

e-68-o2985-sup1.cif (25KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812039414/bv2210Isup2.hkl

e-68-o2985-Isup2.hkl (137.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812039414/bv2210Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES