Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Sep 26;68(Pt 10):o3003. doi: 10.1107/S1600536812039827

2-Ethyl-3,5,6-triphenyl­pyrazine

N Anuradha a, A Thiruvalluvar a,*, S Chitra b, D Devanathan c, R J Butcher d
PMCID: PMC3470362  PMID: 23125775

Abstract

In the title mol­ecule, C24H20N2, the pyrazine ring is significantly distorted from planarity, presumably due to steric crowding, and its conformation is well described as a flattened twist-boat. The benzene ring adjacent to the ethyl group forms dihedral angles of 53.79 (13) and 85.47 (12)° with the other benzene rings; the dihedral angle between adjacent benzene rings is 57.90 (12)°. The ethyl group is disordered over two positions; the site-occupancy factor of the major component is 0.546 (4). No hydrogen bonds are found in the crystal structure.

Related literature  

For the biological properties of pyrazines and for a closely related crystal structure, see: Anuradha et al. (2009).graphic file with name e-68-o3003-scheme1.jpg

Experimental  

Crystal data  

  • C24H20N2

  • M r = 336.42

  • Triclinic, Inline graphic

  • a = 9.2327 (9) Å

  • b = 9.8708 (11) Å

  • c = 10.6787 (14) Å

  • α = 79.604 (10)°

  • β = 70.351 (11)°

  • γ = 87.848 (8)°

  • V = 901.20 (19) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.56 mm−1

  • T = 123 K

  • 0.44 × 0.37 × 0.24 mm

Data collection  

  • Agilent Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) T min = 0.845, T max = 1.000

  • 5769 measured reflections

  • 3576 independent reflections

  • 2622 reflections with I > 2σ(I)

  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.063

  • wR(F 2) = 0.198

  • S = 1.05

  • 3576 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812039827/tk5151sup1.cif

e-68-o3003-sup1.cif (27.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812039827/tk5151Isup2.hkl

e-68-o3003-Isup2.hkl (171.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812039827/tk5151Isup3.cdx

Supplementary material file. DOI: 10.1107/S1600536812039827/tk5151Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

supplementary crystallographic information

Comment

As part of our investigations of pyrazine derivatives (Anuradha et al., 2009) to compare their chemical and biological activities, we have undertaken the X-ray crystal structure analysis of the title compound.

In the title molecule, Fig.1, the pyrazine ring adopts a flattened twist-boat conformation. The phenyl ring at position 5 makes a dihedral angle of 53.79 (13)° and 57.90 (12)° with the phenyl rings at position 3 and 6 respectively. The dihedral angle between the phenyl rings at positions 3 and 6 is 85.47 (12)°. The ethyl group is found to be disordered over two positions; the site occupancy factors refined to 0.546 (4) and 0.454 (4). No classical hydrogen bonds are found in the crystal structure.

Experimental

To a homogeneous solution of benzil (1.05 g, 0.005 mol) and 1-ethyl-2-phenyl-1,2-ethanediaminedihydrochloride (1.45 g, 0.005 mol) in ethanol (20 ml), sodium acetate trihydrate (2.04 g, 0.015 mol) was added. The precipitated sodium chloride was filtered off and the filtrate was refluxed for 2 h. On completion of the reaction, as indicated by TLC, the reaction mixture was poured into crushed ice and the resulting solid was filtered and purified by column chromatography on silica gel. Elution with benzene–petroleum ether (3:2 v/v) at 333–353 K gave the pure product. Yield 1.54 g (70%). The pure product was recrystallized in ethyl acetate, to obtain crystals suitable for X-ray diffraction studies.

Refinement

The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95–0.99 Å , and with Uiso(H) = 1.2–1.5Ueq(C). The ethyl group is found to be disordered over two positions. The anisotropic displacement parameters of equivalent atoms were constrained to be equal; the site occupancy factors refined to 0.546 (4) and 0.454 (4).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius. Only the major disorder component of ethyl group is shown.

Crystal data

C24H20N2 Z = 2
Mr = 336.42 F(000) = 356
Triclinic, P1 Dx = 1.240 Mg m3
Hall symbol: -P 1 Melting point: 423 K
a = 9.2327 (9) Å Cu Kα radiation, λ = 1.54184 Å
b = 9.8708 (11) Å Cell parameters from 1596 reflections
c = 10.6787 (14) Å θ = 4.6–76.1°
α = 79.604 (10)° µ = 0.56 mm1
β = 70.351 (11)° T = 123 K
γ = 87.848 (8)° Prism, colourless
V = 901.20 (19) Å3 0.44 × 0.37 × 0.24 mm

Data collection

Agilent Xcalibur Ruby Gemini diffractometer 3576 independent reflections
Radiation source: Enhance (Cu) X-ray Source 2622 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.027
Detector resolution: 10.5081 pixels mm-1 θmax = 76.3°, θmin = 4.6°
ω scans h = −11→11
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) k = −6→12
Tmin = 0.845, Tmax = 1.000 l = −12→13
5769 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.198 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1016P)2 + 0.1391P] where P = (Fo2 + 2Fc2)/3
3576 reflections (Δ/σ)max = 0.001
244 parameters Δρmax = 0.29 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1 0.3945 (2) 0.3594 (2) 0.4200 (2) 0.0631 (6)
N4 0.6170 (2) 0.19621 (19) 0.48492 (19) 0.0528 (5)
C2 0.5434 (3) 0.3820 (3) 0.3449 (3) 0.0645 (8)
C3 0.6537 (3) 0.2913 (3) 0.3721 (2) 0.0580 (7)
C5 0.4699 (2) 0.1805 (2) 0.5654 (2) 0.0498 (6)
C6 0.3549 (3) 0.2558 (2) 0.5259 (2) 0.0534 (6)
C7A 0.5713 (15) 0.5231 (13) 0.2548 (9) 0.063 (3) 0.546 (4)
C8A 0.4983 (5) 0.5205 (5) 0.1381 (5) 0.0663 (11) 0.546 (4)
C31 0.8188 (3) 0.2978 (2) 0.2824 (2) 0.0563 (7)
C32 0.8599 (3) 0.3073 (3) 0.1431 (3) 0.0720 (9)
C33 1.0135 (3) 0.3172 (3) 0.0618 (3) 0.0736 (9)
C34 1.1255 (3) 0.3181 (3) 0.1184 (3) 0.0656 (8)
C35 1.0868 (3) 0.3074 (3) 0.2567 (3) 0.0603 (7)
C36 0.9331 (3) 0.2953 (2) 0.3381 (2) 0.0549 (7)
C51 0.4413 (2) 0.0844 (2) 0.6962 (2) 0.0496 (6)
C52 0.5414 (2) −0.0232 (2) 0.7054 (2) 0.0542 (6)
C53 0.5192 (3) −0.1138 (3) 0.8258 (3) 0.0634 (8)
C54 0.3977 (3) −0.0970 (3) 0.9402 (2) 0.0661 (8)
C55 0.2987 (3) 0.0105 (3) 0.9334 (2) 0.0614 (8)
C56 0.3201 (3) 0.1008 (2) 0.8133 (2) 0.0555 (7)
C61 0.1863 (2) 0.2299 (2) 0.5919 (2) 0.0518 (6)
C62 0.1196 (3) 0.0985 (2) 0.6206 (2) 0.0534 (6)
C63 −0.0386 (3) 0.0797 (3) 0.6767 (2) 0.0573 (7)
C64 −0.1311 (3) 0.1920 (3) 0.7057 (2) 0.0609 (7)
C65 −0.0657 (3) 0.3224 (3) 0.6778 (3) 0.0634 (8)
C66 0.0919 (3) 0.3419 (3) 0.6198 (3) 0.0600 (7)
C8B 0.4650 (6) 0.5857 (6) 0.2183 (6) 0.0663 (11) 0.454 (4)
C7B 0.5880 (19) 0.4955 (17) 0.2180 (12) 0.063 (3) 0.454 (4)
H2A 0.68302 0.54456 0.21418 0.0759* 0.546 (4)
H1A 0.52231 0.59471 0.30839 0.0759* 0.546 (4)
H5A 0.55242 0.45393 0.08165 0.0998* 0.546 (4)
H3A 0.38908 0.49358 0.17936 0.0998* 0.546 (4)
H4A 0.50889 0.61234 0.08217 0.0998* 0.546 (4)
H34 1.23057 0.32608 0.06258 0.0787*
H35 1.16506 0.30835 0.29591 0.0724*
H36 0.90676 0.28515 0.43334 0.0659*
H52 0.62619 −0.03460 0.62782 0.0650*
H53 0.58741 −0.18763 0.82996 0.0760*
H54 0.38243 −0.15891 1.02299 0.0793*
H55 0.21525 0.02227 1.01182 0.0737*
H56 0.25193 0.17485 0.81016 0.0665*
H62 0.18296 0.02151 0.60148 0.0640*
H63 −0.08372 −0.00978 0.69533 0.0688*
H64 −0.23956 0.17912 0.74471 0.0730*
H65 −0.12926 0.39879 0.69861 0.0761*
H66 0.13612 0.43203 0.59889 0.0720*
H32 0.78209 0.30691 0.10332 0.0864*
H33 1.04047 0.32336 −0.03311 0.0883*
H6B 0.61707 0.45254 0.13633 0.0759* 0.454 (4)
H7B 0.67843 0.54886 0.21448 0.0759* 0.454 (4)
H8B 0.42780 0.61962 0.30408 0.0998* 0.454 (4)
H9B 0.50093 0.66372 0.14346 0.0998* 0.454 (4)
H10B 0.38122 0.53611 0.20745 0.0998* 0.454 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0495 (10) 0.0628 (12) 0.0572 (11) 0.0002 (8) −0.0045 (9) 0.0135 (9)
N4 0.0437 (9) 0.0559 (10) 0.0440 (9) 0.0028 (7) −0.0019 (7) 0.0032 (7)
C2 0.0504 (12) 0.0650 (14) 0.0596 (14) −0.0040 (10) −0.0071 (10) 0.0148 (11)
C3 0.0484 (12) 0.0617 (13) 0.0491 (12) −0.0004 (9) −0.0039 (9) 0.0037 (10)
C5 0.0461 (11) 0.0481 (11) 0.0434 (10) 0.0039 (8) −0.0041 (8) 0.0000 (8)
C6 0.0469 (11) 0.0496 (11) 0.0490 (11) 0.0025 (8) −0.0030 (9) 0.0027 (9)
C7A 0.056 (3) 0.067 (5) 0.046 (5) −0.006 (3) 0.003 (4) 0.004 (3)
C8A 0.0526 (18) 0.061 (2) 0.062 (2) 0.0075 (15) −0.0023 (16) 0.0137 (14)
C31 0.0470 (11) 0.0547 (12) 0.0492 (12) −0.0005 (9) −0.0011 (9) 0.0073 (9)
C32 0.0575 (14) 0.0932 (19) 0.0529 (14) −0.0104 (13) −0.0094 (11) 0.0032 (13)
C33 0.0674 (16) 0.0890 (19) 0.0448 (12) 0.0002 (13) 0.0012 (11) −0.0007 (12)
C34 0.0462 (12) 0.0663 (14) 0.0578 (14) 0.0037 (10) 0.0065 (10) 0.0085 (11)
C35 0.0470 (12) 0.0590 (13) 0.0598 (13) 0.0027 (9) −0.0077 (10) 0.0075 (10)
C36 0.0523 (12) 0.0479 (11) 0.0483 (11) 0.0042 (9) −0.0031 (9) 0.0049 (9)
C51 0.0447 (10) 0.0514 (11) 0.0409 (10) 0.0042 (8) −0.0038 (8) 0.0006 (8)
C52 0.0448 (11) 0.0610 (12) 0.0435 (10) 0.0097 (9) −0.0023 (8) −0.0018 (9)
C53 0.0590 (13) 0.0684 (14) 0.0510 (12) 0.0170 (11) −0.0109 (10) 0.0013 (10)
C54 0.0655 (14) 0.0749 (16) 0.0421 (11) 0.0110 (12) −0.0083 (10) 0.0089 (10)
C55 0.0559 (13) 0.0727 (15) 0.0400 (11) 0.0087 (11) −0.0007 (9) −0.0024 (10)
C56 0.0508 (11) 0.0591 (12) 0.0440 (11) 0.0109 (9) −0.0035 (9) −0.0038 (9)
C61 0.0449 (11) 0.0534 (11) 0.0410 (10) 0.0047 (8) −0.0008 (8) 0.0047 (8)
C62 0.0487 (11) 0.0532 (12) 0.0409 (10) 0.0065 (9) 0.0008 (8) 0.0035 (8)
C63 0.0511 (12) 0.0597 (12) 0.0437 (11) −0.0021 (9) 0.0005 (9) 0.0036 (9)
C64 0.0425 (11) 0.0780 (15) 0.0441 (11) 0.0050 (10) 0.0029 (9) 0.0001 (10)
C65 0.0527 (13) 0.0662 (14) 0.0562 (13) 0.0146 (10) −0.0022 (10) −0.0068 (11)
C66 0.0538 (12) 0.0553 (12) 0.0579 (13) 0.0056 (9) −0.0062 (10) −0.0022 (10)
C8B 0.0526 (18) 0.061 (2) 0.062 (2) 0.0075 (15) −0.0023 (16) 0.0137 (14)
C7B 0.056 (3) 0.067 (5) 0.046 (5) −0.006 (3) 0.003 (4) 0.004 (3)

Geometric parameters (Å, º)

N1—C2 1.342 (4) C63—C64 1.389 (4)
N1—C6 1.338 (3) C64—C65 1.382 (4)
N4—C3 1.337 (3) C65—C66 1.382 (4)
N4—C5 1.338 (3) C7A—H1A 0.9900
C2—C3 1.400 (4) C7A—H2A 0.9900
C2—C7A 1.519 (12) C7B—H6B 0.9900
C2—C7B 1.540 (14) C7B—H7B 0.9900
C3—C31 1.500 (4) C8A—H5A 0.9800
C5—C6 1.409 (3) C8A—H3A 0.9800
C5—C51 1.488 (3) C8A—H4A 0.9800
C6—C61 1.487 (3) C8B—H8B 0.9800
C7A—C8A 1.608 (13) C8B—H9B 0.9800
C7B—C8B 1.416 (19) C8B—H10B 0.9800
C31—C36 1.372 (4) C32—H32 0.9500
C31—C32 1.392 (4) C33—H33 0.9500
C32—C33 1.388 (4) C34—H34 0.9500
C33—C34 1.363 (4) C35—H35 0.9500
C34—C35 1.383 (4) C36—H36 0.9500
C35—C36 1.389 (4) C52—H52 0.9500
C51—C52 1.393 (3) C53—H53 0.9500
C51—C56 1.400 (3) C54—H54 0.9500
C52—C53 1.384 (4) C55—H55 0.9500
C53—C54 1.384 (4) C56—H56 0.9500
C54—C55 1.382 (4) C62—H62 0.9500
C55—C56 1.382 (3) C63—H63 0.9500
C61—C66 1.394 (4) C64—H64 0.9500
C61—C62 1.395 (3) C65—H65 0.9500
C62—C63 1.385 (4) C66—H66 0.9500
C2—N1—C6 119.3 (2) C8B—C7B—H6B 109.00
C3—N4—C5 118.9 (2) C8B—C7B—H7B 109.00
N1—C2—C3 119.7 (3) H6B—C7B—H7B 108.00
N1—C2—C7A 111.8 (6) C2—C7B—H7B 109.00
N1—C2—C7B 119.3 (7) C2—C7B—H6B 109.00
C3—C2—C7A 127.5 (6) H3A—C8A—H5A 109.00
C3—C2—C7B 120.5 (7) H3A—C8A—H4A 109.00
N4—C3—C2 120.7 (2) C7A—C8A—H3A 109.00
N4—C3—C31 116.1 (2) C7A—C8A—H4A 109.00
C2—C3—C31 123.1 (2) C7A—C8A—H5A 109.00
N4—C5—C6 120.09 (19) H4A—C8A—H5A 109.00
N4—C5—C51 115.46 (18) C7B—C8B—H8B 109.00
C6—C5—C51 124.42 (18) C7B—C8B—H10B 109.00
N1—C6—C5 119.9 (2) H8B—C8B—H9B 109.00
N1—C6—C61 114.7 (2) C7B—C8B—H9B 109.00
C5—C6—C61 125.43 (18) H9B—C8B—H10B 109.00
C2—C7A—C8A 108.0 (8) H8B—C8B—H10B 110.00
C2—C7B—C8B 111.3 (10) C33—C32—H32 120.00
C3—C31—C32 121.7 (2) C31—C32—H32 120.00
C3—C31—C36 119.54 (19) C32—C33—H33 120.00
C32—C31—C36 118.7 (2) C34—C33—H33 120.00
C31—C32—C33 120.6 (3) C35—C34—H34 120.00
C32—C33—C34 119.9 (3) C33—C34—H34 120.00
C33—C34—C35 120.3 (3) C36—C35—H35 120.00
C34—C35—C36 119.8 (3) C34—C35—H35 120.00
C31—C36—C35 120.7 (2) C31—C36—H36 120.00
C5—C51—C52 119.45 (18) C35—C36—H36 120.00
C52—C51—C56 118.07 (19) C53—C52—H52 119.00
C5—C51—C56 122.43 (18) C51—C52—H52 119.00
C51—C52—C53 121.0 (2) C54—C53—H53 120.00
C52—C53—C54 120.1 (3) C52—C53—H53 120.00
C53—C54—C55 119.6 (2) C53—C54—H54 120.00
C54—C55—C56 120.5 (2) C55—C54—H54 120.00
C51—C56—C55 120.7 (2) C56—C55—H55 120.00
C6—C61—C62 122.11 (19) C54—C55—H55 120.00
C62—C61—C66 119.2 (2) C51—C56—H56 120.00
C6—C61—C66 118.6 (2) C55—C56—H56 120.00
C61—C62—C63 120.3 (2) C61—C62—H62 120.00
C62—C63—C64 119.9 (3) C63—C62—H62 120.00
C63—C64—C65 120.1 (3) C62—C63—H63 120.00
C64—C65—C66 120.2 (3) C64—C63—H63 120.00
C61—C66—C65 120.3 (3) C65—C64—H64 120.00
C2—C7A—H1A 110.00 C63—C64—H64 120.00
C2—C7A—H2A 110.00 C66—C65—H65 120.00
C8A—C7A—H1A 110.00 C64—C65—H65 120.00
C8A—C7A—H2A 110.00 C61—C66—H66 120.00
H1A—C7A—H2A 108.00 C65—C66—H66 120.00
C6—N1—C2—C3 4.6 (4) N1—C6—C61—C66 −46.4 (3)
C6—N1—C2—C7A −164.7 (5) C5—C6—C61—C62 −48.8 (3)
C2—N1—C6—C5 6.2 (3) C5—C6—C61—C66 134.3 (2)
C2—N1—C6—C61 −173.1 (2) C3—C31—C32—C33 178.1 (3)
C5—N4—C3—C2 6.1 (4) C36—C31—C32—C33 −1.4 (4)
C5—N4—C3—C31 −176.5 (2) C3—C31—C36—C35 −177.1 (2)
C3—N4—C5—C6 4.8 (3) C32—C31—C36—C35 2.5 (3)
C3—N4—C5—C51 −173.2 (2) C31—C32—C33—C34 −0.2 (4)
N1—C2—C3—N4 −11.2 (4) C32—C33—C34—C35 0.8 (5)
N1—C2—C3—C31 171.6 (2) C33—C34—C35—C36 0.2 (4)
C7A—C2—C3—N4 156.3 (6) C34—C35—C36—C31 −1.9 (4)
C7A—C2—C3—C31 −20.9 (7) C5—C51—C52—C53 179.4 (2)
N1—C2—C7A—C8A −70.8 (7) C56—C51—C52—C53 1.9 (3)
C3—C2—C7A—C8A 120.9 (7) C5—C51—C56—C55 −179.0 (2)
N4—C3—C31—C32 134.5 (2) C52—C51—C56—C55 −1.6 (3)
N4—C3—C31—C36 −45.9 (3) C51—C52—C53—C54 −1.2 (4)
C2—C3—C31—C32 −48.2 (4) C52—C53—C54—C55 0.1 (4)
C2—C3—C31—C36 131.4 (3) C53—C54—C55—C56 0.2 (4)
N4—C5—C6—N1 −11.3 (3) C54—C55—C56—C51 0.6 (4)
N4—C5—C6—C61 167.98 (19) C6—C61—C62—C63 −177.1 (2)
C51—C5—C6—N1 166.6 (2) C66—C61—C62—C63 −0.3 (3)
C51—C5—C6—C61 −14.1 (3) C6—C61—C66—C65 178.3 (2)
N4—C5—C51—C52 −27.8 (3) C62—C61—C66—C65 1.3 (4)
N4—C5—C51—C56 149.6 (2) C61—C62—C63—C64 −0.6 (3)
C6—C5—C51—C52 154.2 (2) C62—C63—C64—C65 0.5 (3)
C6—C5—C51—C56 −28.4 (3) C63—C64—C65—C66 0.6 (4)
N1—C6—C61—C62 130.5 (2) C64—C65—C66—C61 −1.5 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5151).

References

  1. Agilent (2012). CrysAlis PRO Agilent Technologies, Yarnton, Oxfordshire, England.
  2. Anuradha, N., Thiruvalluvar, A., Pandiarajan, K., Chitra, S. & Butcher, R. J. (2009). Acta Cryst. E65, o106. [DOI] [PMC free article] [PubMed]
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812039827/tk5151sup1.cif

e-68-o3003-sup1.cif (27.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812039827/tk5151Isup2.hkl

e-68-o3003-Isup2.hkl (171.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812039827/tk5151Isup3.cdx

Supplementary material file. DOI: 10.1107/S1600536812039827/tk5151Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES