Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Sep 26;68(Pt 10):o3019–o3020. doi: 10.1107/S1600536812039359

4,4′-[(2R*,3R*,4R*,5R*)-3,4-Dimethyl­tetra­hydro­furan-2,5-di­yl]diphenol

Juan Manuel de Jesús Favela-Hernández a, María del Rayo Camacho-Corona a, Sylvain Bernès a,*, Marcos Flores-Alamo b
PMCID: PMC3470375  PMID: 23125788

Abstract

The title mol­ecule, C18H20O3, is a furan­oid lignan extracted from the leaves of Larrea tridentata. The relative absolute configuration for the four chiral centers was established, showing that this compound is 4-epi-larreatricin, which has been previously reported in the literature. The mol­ecule displays noncrystallographic C 2 symmetry, with the methyl and phenol substituents alternating above and below the mean plane of the furan ring. The conformation of this ring is described by the pseudorotation phase angle P = 171.3° and the maximum out-of-plane pucker νm = 37.7°. These parameters indicate that the furan ring adopts the same conformation as the ribose residues in B-DNA. The packing is dominated by inter­molecular O—H⋯O hydrogen bonds. The phenol hy­droxy groups form chains in the [110] direction and these chains inter­act via O—H⋯O(furan) contacts.

Related literature  

For the extraction, synthesis, characterization and biological activity of the title compound, see: Konno et al. (1990); Moinuddin et al. (2003); Favela-Hernández et al. (2012). For the conformational analysis of sugar rings, see: Altona & Sundaralingam (1972); Sun et al. (2004). For an example of another naturally occurring furan­oid lignan, see: Soepadamo et al. (1991).graphic file with name e-68-o3019-scheme1.jpg

Experimental  

Crystal data  

  • C18H20O3

  • M r = 284.34

  • Monoclinic, Inline graphic

  • a = 6.4225 (4) Å

  • b = 12.4973 (7) Å

  • c = 9.8176 (7) Å

  • β = 101.243 (6)°

  • V = 772.88 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.36 × 0.26 × 0.21 mm

Data collection  

  • Agilent Xcalibur (Atlas, Gemini) diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)] T min = 0.980, T max = 0.985

  • 5223 measured reflections

  • 1592 independent reflections

  • 1107 reflections with I > 2σ(I)

  • R int = 0.041

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.106

  • S = 1.05

  • 1592 reflections

  • 198 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: 1004 measured Friedel pairs merged for refinement

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812039359/mw2082sup1.cif

e-68-o3019-sup1.cif (24.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812039359/mw2082Isup2.hkl

e-68-o3019-Isup2.hkl (78.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812039359/mw2082Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2i 0.92 (5) 1.84 (5) 2.752 (4) 169 (5)
O2—H2⋯O1ii 0.90 (4) 1.89 (4) 2.723 (3) 154 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This project was financially supported by Mexican grants CONACYT-SEP-CB-2008-01 (project No. 106107) and PAICYT SA221-09.

supplementary crystallographic information

Comment

The characterization of the title molecule is a part of a long-term project related to the screening of extracts obtained from plants used in Mexican traditional medicine to treat respiratory infections like tuberculosis. The title furanoid lignan is present in the chloroformic extract of Larrea tridentata, a plant found mainly in the southwestern US and northern Mexico. We have recently probed the antibacterial and antimycobacterial activity of this molecule and found that it is active against methicillin resistant S. aureus and M. tuberculosis H37Rv strain (Favela-Hernández et al., 2012). This molecule was previously extracted from L. tridentata samples from Phoenix, Arizona and characterized by MS and NMR (Konno et al., 1990). The synthesis and chiral HPLC analysis of stereoisomers of this compound have also been carried out (Moinuddin et al., 2003).

The relative stereochemistry for the four chiral C atoms in the furan ring was determined (Fig. 1) showing that the crystallized lignan corresponds to 4-epi-larreatricin (Konno et al., 1990; Moinuddin et al., 2003). The same configuration was found in related furanoid lignans from other natural sources, for example grandisin, which is extracted from Cryptocarya crassinervia (Soepadamo et al., 1991). The four substituents of the central furan ring are arranged in an all-transα,α'-diaryl-β,β'-dimethyl manner thus avoiding steric hindrance between aryl and methyl groups. The furan ring adopts a twisted envelope conformation characteristic of ribose sugars in the B-form of DNA (hydrated DNA). This may be checked by computing the phase angle of pseudorotation for the ring, P = 171.3°, and the maximum degree of pucker, νm = 37.7° (Altona & Sundaralingam, 1972). The comparison of these data with the distribution of P and νm for β-nucleosides found in the CSD clearly shows that the title compound lies in the south hemisphere of the pseudorotational wheel and within the C2'-endo cluster (2E form, P = 162° (See Fig. 3 in Altona & Sundaralingam, 1972 and Fig. 6 in Sun et al., 2004)).

The crystal structure is based on chains formed through intermolecular O—H···O hydrogen bonds involving the hydroxyl groups (Fig. 2, inset). The resulting layer interacts with the neighboring layer packed along the c axis, through O—H···O(furan) contacts, forming the complete three-dimensional framework (Fig. 2).

Experimental

Leaves of L. tridentata were collected in Galeana, Nuevo León, Mexico, and authenticated by Biól. Mauricio González (Voucher 024772, Facultad de Ciencias Biológicas, UANL). Dried and ground leaves (500 g) were extracted with hexane and then with CHCl3 through maceration. Details of the chromatography of the chloroform fraction have been described previously (Favela-Hernández et al., 2012). This afforded, among other products, 11 mg of the title molecule, which was crystallized from CHCl3/MeOH (95/5, v/v). m.p. 503–505 K (Lit. 503–505 K, Konno et al., 1990). 1H and 13C NMR data are in agreement with the X-ray structure.

Refinement

With only first row elements present, the absolute structure could not be determined with certainty so the Friedel pairs (1004) were merged. C-bound H atoms were placed in idealized positions with C—H = 0.93 (aromatic CH), 0.96 (methyl CH3) or 0.98 Å (methine CH) and included as riding contributions. Hydroxyl H atoms, H2 and H3, were found in a difference map and refined freely. Isotropic displacement parameters for H atoms were calculated as Uiso(H) = xUeq(carrier atom) where x = 1.5 for methyl and hydroxyl groups, and x = 1.2 for other H atoms.

Figures

Fig. 1.

Fig. 1.

ORTEP-like view of the title molecule with displacement ellipsoids for non-H atoms at the 30% probability level.

Fig. 2.

Fig. 2.

Part of the crystal structure of the title compound viewed down c emphasizing the chain framework. All red chains are placed in a common plane, and blue chains are in a plane above the red molecules. Both planes interact through O—H···O(furan) contacts. The inset represents a part of a single chain. All H atoms not involved in hydrogen bonds have been omitted, and intermolecular contacts are represented as green dashed lines.

Crystal data

C18H20O3 F(000) = 304
Mr = 284.34 Dx = 1.222 Mg m3
Monoclinic, P21 Melting point: 503 K
Hall symbol: P 2yb Mo Kα radiation, λ = 0.71073 Å
a = 6.4225 (4) Å Cell parameters from 1308 reflections
b = 12.4973 (7) Å θ = 3.5–26.0°
c = 9.8176 (7) Å µ = 0.08 mm1
β = 101.243 (6)° T = 298 K
V = 772.88 (9) Å3 Block, colourless
Z = 2 0.36 × 0.26 × 0.21 mm

Data collection

Agilent Xcalibur (Atlas, Gemini) diffractometer 1592 independent reflections
Radiation source: Enhance (Mo) X-ray Source 1107 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.041
Detector resolution: 10.4685 pixels mm-1 θmax = 26.1°, θmin = 3.5°
φ and ω scans h = −7→6
Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)] k = −15→15
Tmin = 0.980, Tmax = 0.985 l = −12→11
5223 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0498P)2] where P = (Fo2 + 2Fc2)/3
1592 reflections (Δ/σ)max < 0.001
198 parameters Δρmax = 0.19 e Å3
1 restraint Δρmin = −0.18 e Å3
0 constraints Absolute structure: 1004 measured Friedel pairs merged for refinement

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.6576 (4) 0.17906 (19) 0.2077 (2) 0.0608 (7)
O2 0.3301 (4) −0.29301 (19) 0.0656 (2) 0.0569 (6)
H2 0.377 (5) −0.303 (4) −0.014 (4) 0.085*
O3 0.9213 (4) 0.64265 (18) 0.0690 (3) 0.0741 (8)
H3 1.056 (8) 0.659 (4) 0.058 (5) 0.111*
C2 0.5625 (5) 0.1142 (3) 0.3000 (3) 0.0489 (8)
H2A 0.4333 0.1500 0.3155 0.059*
C3 0.7244 (5) 0.1130 (3) 0.4373 (4) 0.0588 (9)
H3A 0.8255 0.0553 0.4313 0.071*
C4 0.8399 (5) 0.2166 (3) 0.4337 (3) 0.0598 (9)
H4A 0.7472 0.2739 0.4551 0.072*
C5 0.8532 (5) 0.2269 (3) 0.2820 (4) 0.0519 (9)
H5A 0.9727 0.1835 0.2651 0.062*
C6 0.6305 (7) 0.0920 (5) 0.5619 (4) 0.0953 (16)
H6A 0.7419 0.0872 0.6426 0.143*
H6B 0.5530 0.0259 0.5498 0.143*
H6C 0.5362 0.1493 0.5737 0.143*
C7 1.0528 (6) 0.2277 (4) 0.5332 (4) 0.0903 (14)
H7A 1.1126 0.2967 0.5212 0.135*
H7B 1.1476 0.1728 0.5140 0.135*
H7C 1.0323 0.2207 0.6270 0.135*
C8 0.5031 (5) 0.0063 (2) 0.2373 (4) 0.0459 (8)
C9 0.6388 (5) −0.0506 (3) 0.1717 (4) 0.0564 (9)
H9A 0.7700 −0.0214 0.1659 0.068*
C10 0.5841 (5) −0.1507 (3) 0.1138 (4) 0.0574 (9)
H10A 0.6780 −0.1878 0.0700 0.069*
C11 0.3913 (5) −0.1941 (3) 0.1217 (3) 0.0448 (8)
C12 0.2553 (5) −0.1400 (3) 0.1891 (4) 0.0561 (9)
H12A 0.1254 −0.1701 0.1963 0.067*
C13 0.3120 (5) −0.0407 (3) 0.2462 (4) 0.0571 (9)
H13A 0.2189 −0.0047 0.2918 0.069*
C14 0.8752 (5) 0.3372 (3) 0.2270 (3) 0.0467 (8)
C15 0.7158 (5) 0.4127 (3) 0.2230 (4) 0.0586 (10)
H15A 0.5943 0.3948 0.2563 0.070*
C16 0.7343 (5) 0.5140 (3) 0.1703 (4) 0.0615 (10)
H16A 0.6250 0.5632 0.1675 0.074*
C17 0.9120 (5) 0.5420 (3) 0.1225 (4) 0.0526 (9)
C18 1.0742 (5) 0.4688 (3) 0.1258 (4) 0.0535 (9)
H18A 1.1962 0.4877 0.0937 0.064*
C19 1.0533 (5) 0.3675 (3) 0.1771 (4) 0.0516 (9)
H19A 1.1621 0.3182 0.1781 0.062*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0838 (15) 0.0455 (15) 0.0496 (14) −0.0226 (12) 0.0047 (11) 0.0036 (11)
O2 0.0778 (15) 0.0387 (14) 0.0569 (15) −0.0091 (12) 0.0199 (11) −0.0006 (13)
O3 0.0794 (17) 0.0361 (15) 0.109 (2) −0.0074 (13) 0.0236 (16) 0.0085 (14)
C2 0.0552 (18) 0.037 (2) 0.055 (2) −0.0024 (15) 0.0118 (15) 0.0019 (16)
C3 0.070 (2) 0.051 (2) 0.055 (2) −0.0058 (18) 0.0119 (17) 0.0035 (19)
C4 0.063 (2) 0.059 (2) 0.054 (2) −0.0017 (18) 0.0007 (15) 0.006 (2)
C5 0.0527 (19) 0.039 (2) 0.063 (2) −0.0002 (15) 0.0098 (15) −0.0003 (18)
C6 0.107 (3) 0.109 (4) 0.069 (3) −0.019 (3) 0.013 (2) 0.015 (3)
C7 0.086 (3) 0.097 (4) 0.077 (3) −0.015 (3) −0.009 (2) 0.002 (3)
C8 0.0547 (19) 0.0343 (19) 0.049 (2) −0.0024 (14) 0.0109 (15) 0.0031 (15)
C9 0.0549 (19) 0.048 (2) 0.070 (3) −0.0090 (16) 0.0216 (17) −0.006 (2)
C10 0.058 (2) 0.053 (2) 0.067 (2) 0.0024 (17) 0.0249 (17) −0.005 (2)
C11 0.0588 (19) 0.0306 (18) 0.0461 (19) −0.0029 (15) 0.0128 (14) 0.0048 (15)
C12 0.0563 (19) 0.043 (2) 0.073 (3) −0.0117 (17) 0.0253 (17) −0.0023 (19)
C13 0.062 (2) 0.048 (2) 0.067 (3) −0.0035 (17) 0.0257 (17) −0.0069 (19)
C14 0.0513 (18) 0.038 (2) 0.050 (2) −0.0052 (14) 0.0076 (14) −0.0030 (16)
C15 0.054 (2) 0.043 (2) 0.081 (3) −0.0055 (16) 0.0191 (18) −0.0015 (19)
C16 0.057 (2) 0.040 (2) 0.088 (3) −0.0006 (16) 0.0154 (18) 0.003 (2)
C17 0.060 (2) 0.0313 (19) 0.064 (2) −0.0072 (16) 0.0073 (16) −0.0056 (17)
C18 0.0538 (19) 0.045 (2) 0.064 (2) −0.0055 (16) 0.0176 (16) −0.0077 (18)
C19 0.0507 (18) 0.037 (2) 0.068 (2) 0.0000 (15) 0.0155 (16) −0.0045 (17)

Geometric parameters (Å, º)

O1—C2 1.437 (4) C7—H7C 0.9600
O1—C5 1.452 (3) C8—C9 1.378 (5)
O2—C11 1.378 (4) C8—C13 1.379 (4)
O2—H2 0.90 (4) C9—C10 1.390 (5)
O3—C17 1.368 (4) C9—H9A 0.9300
O3—H3 0.92 (5) C10—C11 1.368 (4)
C2—C8 1.501 (4) C10—H10A 0.9300
C2—C3 1.533 (5) C11—C12 1.373 (5)
C2—H2A 0.9800 C12—C13 1.381 (5)
C3—C6 1.489 (5) C12—H12A 0.9300
C3—C4 1.496 (5) C13—H13A 0.9300
C3—H3A 0.9800 C14—C19 1.383 (5)
C4—C5 1.513 (5) C14—C15 1.387 (4)
C4—C7 1.524 (4) C15—C16 1.381 (5)
C4—H4A 0.9800 C15—H15A 0.9300
C5—C14 1.497 (5) C16—C17 1.362 (5)
C5—H5A 0.9800 C16—H16A 0.9300
C6—H6A 0.9600 C17—C18 1.382 (5)
C6—H6B 0.9600 C18—C19 1.379 (5)
C6—H6C 0.9600 C18—H18A 0.9300
C7—H7A 0.9600 C19—H19A 0.9300
C7—H7B 0.9600
C2—O1—C5 110.3 (2) H7B—C7—H7C 109.5
C11—O2—H2 111 (3) C9—C8—C13 117.5 (3)
C17—O3—H3 112 (3) C9—C8—C2 121.5 (3)
O1—C2—C8 110.7 (3) C13—C8—C2 121.0 (3)
O1—C2—C3 105.1 (2) C8—C9—C10 121.5 (3)
C8—C2—C3 115.2 (3) C8—C9—H9A 119.2
O1—C2—H2A 108.5 C10—C9—H9A 119.2
C8—C2—H2A 108.5 C11—C10—C9 119.6 (3)
C3—C2—H2A 108.5 C11—C10—H10A 120.2
C6—C3—C4 117.0 (4) C9—C10—H10A 120.2
C6—C3—C2 114.2 (3) C10—C11—C12 120.0 (3)
C4—C3—C2 103.0 (3) C10—C11—O2 121.6 (3)
C6—C3—H3A 107.4 C12—C11—O2 118.4 (3)
C4—C3—H3A 107.4 C11—C12—C13 119.7 (3)
C2—C3—H3A 107.4 C11—C12—H12A 120.1
C3—C4—C5 102.7 (3) C13—C12—H12A 120.1
C3—C4—C7 116.8 (3) C8—C13—C12 121.7 (3)
C5—C4—C7 114.0 (3) C8—C13—H13A 119.2
C3—C4—H4A 107.6 C12—C13—H13A 119.2
C5—C4—H4A 107.6 C19—C14—C15 117.4 (3)
C7—C4—H4A 107.6 C19—C14—C5 121.5 (3)
O1—C5—C14 109.3 (2) C15—C14—C5 121.1 (3)
O1—C5—C4 104.5 (2) C16—C15—C14 121.1 (3)
C14—C5—C4 117.4 (3) C16—C15—H15A 119.4
O1—C5—H5A 108.4 C14—C15—H15A 119.4
C14—C5—H5A 108.4 C17—C16—C15 120.3 (3)
C4—C5—H5A 108.4 C17—C16—H16A 119.9
C3—C6—H6A 109.5 C15—C16—H16A 119.9
C3—C6—H6B 109.5 C16—C17—O3 118.1 (3)
H6A—C6—H6B 109.5 C16—C17—C18 120.0 (3)
C3—C6—H6C 109.5 O3—C17—C18 121.9 (3)
H6A—C6—H6C 109.5 C19—C18—C17 119.3 (3)
H6B—C6—H6C 109.5 C19—C18—H18A 120.3
C4—C7—H7A 109.5 C17—C18—H18A 120.3
C4—C7—H7B 109.5 C18—C19—C14 121.8 (3)
H7A—C7—H7B 109.5 C18—C19—H19A 119.1
C4—C7—H7C 109.5 C14—C19—H19A 119.1
H7A—C7—H7C 109.5
C5—O1—C2—C8 −131.3 (3) C8—C9—C10—C11 0.1 (5)
C5—O1—C2—C3 −6.2 (3) C9—C10—C11—C12 −1.4 (5)
O1—C2—C3—C6 155.4 (4) C9—C10—C11—O2 179.9 (3)
C8—C2—C3—C6 −82.5 (4) C10—C11—C12—C13 1.4 (5)
O1—C2—C3—C4 27.4 (3) O2—C11—C12—C13 −179.9 (3)
C8—C2—C3—C4 149.6 (3) C9—C8—C13—C12 −1.4 (5)
C6—C3—C4—C5 −163.5 (3) C2—C8—C13—C12 −179.9 (3)
C2—C3—C4—C5 −37.3 (3) C11—C12—C13—C8 0.1 (5)
C6—C3—C4—C7 71.0 (5) O1—C5—C14—C19 −124.5 (3)
C2—C3—C4—C7 −162.8 (3) C4—C5—C14—C19 116.8 (3)
C2—O1—C5—C14 −143.7 (3) O1—C5—C14—C15 54.8 (4)
C2—O1—C5—C4 −17.2 (3) C4—C5—C14—C15 −63.9 (4)
C3—C4—C5—O1 34.0 (3) C19—C14—C15—C16 0.3 (5)
C7—C4—C5—O1 161.3 (3) C5—C14—C15—C16 −179.0 (3)
C3—C4—C5—C14 155.2 (3) C14—C15—C16—C17 −0.7 (6)
C7—C4—C5—C14 −77.5 (4) C15—C16—C17—O3 178.8 (3)
O1—C2—C8—C9 44.0 (4) C15—C16—C17—C18 0.4 (6)
C3—C2—C8—C9 −75.1 (4) C16—C17—C18—C19 0.3 (5)
O1—C2—C8—C13 −137.5 (3) O3—C17—C18—C19 −178.0 (3)
C3—C2—C8—C13 103.4 (4) C17—C18—C19—C14 −0.7 (5)
C13—C8—C9—C10 1.3 (5) C15—C14—C19—C18 0.4 (5)
C2—C8—C9—C10 179.9 (3) C5—C14—C19—C18 179.7 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3—H3···O2i 0.92 (5) 1.84 (5) 2.752 (4) 169 (5)
O2—H2···O1ii 0.90 (4) 1.89 (4) 2.723 (3) 154 (3)

Symmetry codes: (i) x+1, y+1, z; (ii) −x+1, y−1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MW2082).

References

  1. Altona, C. & Sundaralingam, M. (1972). J. Am. Chem. Soc. 94, 8205–8212. [DOI] [PubMed]
  2. Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  3. Favela-Hernández, J. M. J., García, A., Garza-González, E., Rivas-Galindo, V. M. & Camacho-Corona, M. R. (2012). Phytother. Res. doi:10.1002/ptr.4660. [DOI] [PubMed]
  4. Konno, C., Lu, Z.-Z., Xue, H.-Z., Erdelmeier, C. A. J., Meksuriyen, D., Che, C.-T., Cordell, G. A., Soejarto, D. D., Waller, D. P. & Fong, H. H. S. (1990). J. Nat. Prod. 53, 396–406. [DOI] [PubMed]
  5. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  6. Moinuddin, S. G. A., Hishiyama, S., Cho, M.-H., Davin, L. B. & Lewis, N. G. (2003). Org. Biomol. Chem. 1, 2307–2313. [DOI] [PubMed]
  7. Oxford Diffraction (2009). CrysAlis CCD, CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, Yarnton, Oxforfdshire, England.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Soepadamo, J. M. S., Fang, X.-P., McLaughlin, J. L. & Fanwick, P. E. (1991). J. Nat. Prod. 54, 1681–1683. [DOI] [PubMed]
  10. Sun, G., Voigt, J. H., Filippov, I. V., Marquez, V. E. & Nicklaus, M. C. (2004). J. Chem. Inf. Comput. Sci. 44, 1752–1762. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812039359/mw2082sup1.cif

e-68-o3019-sup1.cif (24.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812039359/mw2082Isup2.hkl

e-68-o3019-Isup2.hkl (78.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812039359/mw2082Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES