Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Sep 29;68(Pt 10):o3043–o3044. doi: 10.1107/S1600536812040329

4,4′-Difluoro-2,2′-[imidazolidine-1,3-diylbis(methyl­ene)]diphenol

Augusto Rivera a,*, Luz Stella Nerio a, Jaime Ríos-Motta a, Monika Kučeráková b, Michal Dušek b
PMCID: PMC3470394  PMID: 23125807

Abstract

In the title compound, C17H18F2N2O2, the imidazolidine ring system exists in a twist conformation. The mean plane through this ring system forms dihedral angles of 80.8 (8)° and 66.2 (13)°, with the benzene rings. The dihedral angle between the benzene rings is 52.0 (14)°. Two intra­molecular O—H⋯N hydrogen bonds each generate S(6) ring motifs. In the crystal, weak C—H⋯O hydrogen bonds form dimers, which are connected by further C—H⋯O inter­actions.

Related literature  

For related structures, see: Rivera et al. (2011, 2012). For the preparation of the title compound, see: Rivera et al. (1993). For standard bond lengths, see: Allen et al. (1987). For ring conformations, see Cremer & Pople (1975). For hydrogen-bond graph-set nomenclature, see: Bernstein et al. (1995). For the involvement of organo halides in hydrogen bonds, see: Rathore et al. (2011); Steiner (2002); Chopra & Guru Row (2005). For the extinction correction used, see: Becker & Coppens (1974). graphic file with name e-68-o3043-scheme1.jpg

Experimental  

Crystal data  

  • C17H18F2N2O2

  • M r = 320.3

  • Monoclinic, Inline graphic

  • a = 9.5952 (2) Å

  • b = 9.7018 (2) Å

  • c = 16.2065 (3) Å

  • β = 99.4807 (17)°

  • V = 1488.07 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.94 mm−1

  • T = 120 K

  • 0.35 × 0.22 × 0.21 mm

Data collection  

  • Agilent Xcalibur (Atlas, Gemini ultra) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.123, T max = 1

  • 35554 measured reflections

  • 2669 independent reflections

  • 2452 reflections with I > 3σ(I)

  • R int = 0.025

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.108

  • S = 2.21

  • 2669 reflections

  • 215 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812040329/sj5264sup1.cif

e-68-o3043-sup1.cif (85.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812040329/sj5264Isup2.hkl

e-68-o3043-Isup2.hkl (110.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812040329/sj5264Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.937 (16) 1.756 (16) 2.6413 (12) 156.2 (14)
O2—H2⋯N1 0.903 (16) 1.821 (15) 2.6579 (12) 153.2 (13)
C11—H1c11⋯O1i 0.96 2.44 3.4001 (13) 174.43
C17—H2c17⋯O1ii 0.96 2.55 3.4837 (13) 166

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia, for financial support of this work as well as the Praemium Academiae project of the Academy of Sciences of the Czech Republic. LSN thanks COLCIENCIAS for a fellowship.

supplementary crystallographic information

Comment

Among the various types of intermolecular interactions, the hydrogen bond is, without doubt, the most important one. Organic halide compounds have attracted much attention due to the role of weak intermolecular C—H···X interactions in supramolecular assembly (Rathore et al. 2011, Steiner 2002). In recent literature, the importance of interactions involving fluorine as possible tools in crystal engineering has been explored in greater detail (Chopra & Guru Row, 2005). With the purpose to understand its effects in Mannich bases, we turn our attention to title compound (I) because fluorine is also able to form non-classical intermolecular C–H···F hydrogen bonds. In this study, we describe the crystal structure of the title compound, 4,4'-difluoro-2,2'-[imidazolidine-1,3-diylbis(methylene)]diphenol.

The molecular structure and atom-numbering scheme for (I) are shown in Fig. 1. The bond lengths (Allen et al., 1987) and angles of (I) are within normal ranges and are comparable to those related structures (Rivera et al., 2011, 2012). As observed in related structures (Rivera et al., 2011, 2012). The imidazoline ring adopts a twist conformation, Q2 = 0.4008 (13) Å and φ2 = 51.81 (18)° (Cremer & Pople, 1975), with a twist about the N2 —C14 bond. In order to reduce steric congestion, the benzene rings have different orientations with respect to the central imidazolidine ring. Thus, one p-fluoro-substituted benzene ring (C1/C2/C5/C10/C6/C17)is approximately orthogonal to the mean plane of the imidazolidine ring defined by N1, C13 and C9, making a dihedral angle of 80.82 (79)°, whereas the other ring (C3/C4/C7/C13/C16/C12) forms a dihedral angle of 66.18 (130)°. The dihedral angle between the benzene rings is 52.04 (136)°. There are two intramolecular hydrogen bonds between the phenolic hydroxyl groups and the nitrogen atoms with graph-set motif S(6) (Bernstein et al., 1995).

The results demonstrate, that not only the packing in (I) is governed by weak C—H···O hydrogen bonds (Table 1), resulting in a hydrogen bonded dimer, which is connected by further C—H···O interactions, but also that fluorine does not participate in any intermolecular interactions. Similarly, in ortho-F and ortho-Cl substituted analogs (Rivera et al., 2012, 2011), the halogen fails to participate in any non-bonded interaction.

Experimental

For the originally reported synthesis of the title compound, see: Rivera et al. (1993). Crystals suitable for X-ray diffraction were obtained from chloroform with a few drops of MeOH upon slow evaporation of the solvents over 3 days at room temperature.

Refinement

All hydrogen atoms were discernible in difference Fourier maps and could be refined to reasonable geometry. According to common practice H atoms bonded C atoms were kept in ideal positions with C—H distance 0.96 Å during the refinement. The hydroxyl H atoms were found in difference Fourier maps and their coordinates were refined freely. All H atoms were refined with displacement displacement coefficients Uiso(H) set to 1.5Ueq(C, O) for methyl and hydroxyl groups and to to 1.2Ueq(C) for the CH— and CH2— groups.

Figures

Fig. 1.

Fig. 1.

A perspective view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Intramolecular hydrogen bonds are drawn as dashed lines.

Crystal data

C17H18F2N2O2 F(000) = 672
Mr = 320.3 Dx = 1.429 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2yabc Cell parameters from 21321 reflections
a = 9.5952 (2) Å θ = 4.6–67.0°
b = 9.7018 (2) Å µ = 0.94 mm1
c = 16.2065 (3) Å T = 120 K
β = 99.4807 (17)° Polygon shape, white
V = 1488.07 (5) Å3 0.35 × 0.22 × 0.21 mm
Z = 4

Data collection

Agilent Xcalibur (Atlas, Gemini ultra) diffractometer 2669 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source 2452 reflections with I > 3σ(I)
Mirror monochromator Rint = 0.025
Detector resolution: 10.3784 pixels mm-1 θmax = 67.1°, θmin = 5.0°
ω scans h = −11→11
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −11→11
Tmin = 0.123, Tmax = 1 l = −19→19
35554 measured reflections

Refinement

Refinement on F2 H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.031 Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0016I2)
wR(F2) = 0.108 (Δ/σ)max = 0.009
S = 2.21 Δρmax = 0.19 e Å3
2669 reflections Δρmin = −0.17 e Å3
215 parameters Extinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974)
0 restraints Extinction coefficient: 900 (400)
66 constraints

Special details

Experimental. CrysAlisPro, Agilent, 2010Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.58488 (7) 0.98624 (8) 0.11639 (4) 0.0290 (2)
F2 0.02275 (8) 0.97367 (8) 0.76918 (5) 0.0339 (3)
O1 0.37960 (8) 0.95183 (9) 0.53830 (5) 0.0225 (3)
O2 0.14871 (8) 1.28848 (8) 0.20259 (5) 0.0238 (3)
N1 0.25088 (9) 1.23815 (10) 0.36231 (6) 0.0205 (3)
N2 0.32537 (9) 1.21463 (10) 0.50457 (5) 0.0193 (3)
C1 0.30030 (12) 1.22156 (12) 0.59151 (7) 0.0211 (3)
C2 0.25940 (11) 1.21368 (11) 0.18359 (7) 0.0203 (3)
C3 0.45165 (11) 1.05403 (12) 0.21953 (7) 0.0210 (3)
C4 0.39919 (12) 1.14642 (12) 0.07918 (7) 0.0245 (3)
C5 0.33984 (11) 1.12752 (12) 0.24310 (6) 0.0195 (3)
C6 0.28663 (11) 0.96039 (12) 0.59366 (7) 0.0196 (3)
C7 0.24230 (11) 1.08848 (12) 0.62013 (6) 0.0189 (3)
C8 0.15072 (11) 1.09088 (12) 0.67872 (7) 0.0217 (3)
C9 0.40565 (12) 1.33344 (13) 0.48144 (7) 0.0248 (3)
C10 0.14906 (12) 0.84193 (13) 0.68378 (7) 0.0239 (3)
C11 0.29049 (12) 1.22389 (12) 0.10290 (7) 0.0236 (3)
C12 0.23894 (11) 0.83887 (12) 0.62461 (7) 0.0222 (3)
C13 0.36823 (12) 1.33886 (12) 0.38570 (7) 0.0240 (4)
C14 0.19724 (11) 1.21598 (12) 0.44037 (6) 0.0206 (3)
C15 0.47692 (11) 1.06297 (12) 0.13855 (7) 0.0223 (3)
C16 0.10847 (12) 0.96840 (13) 0.70989 (7) 0.0241 (4)
C17 0.30169 (11) 1.10785 (12) 0.32918 (7) 0.0211 (3)
H1c1 0.235801 1.295343 0.597024 0.0253*
H2c1 0.386945 1.24408 0.627648 0.0253*
H1c3 0.510721 0.997491 0.25954 0.0251*
H1c4 0.419502 1.150888 0.023184 0.0294*
H1c8 0.11748 1.177084 0.697131 0.026*
H1c9 0.504952 1.316125 0.497307 0.0297*
H2c9 0.372858 1.415883 0.504826 0.0297*
H1c10 0.116351 0.758191 0.705713 0.0286*
H1c11 0.236448 1.284933 0.063317 0.0283*
H1c12 0.26825 0.751886 0.605019 0.0266*
H1c13 0.335867 1.429715 0.368634 0.0288*
H2c13 0.448556 1.310747 0.361506 0.0288*
H1c14 0.151711 1.127692 0.438843 0.0247*
H2c14 0.138427 1.292231 0.450322 0.0247*
H1c17 0.229709 1.038565 0.326799 0.0253*
H2c17 0.382737 1.074935 0.36675 0.0253*
H2 0.1570 (14) 1.2826 (15) 0.2588 (10) 0.0286*
H1 0.3808 (15) 1.0424 (16) 0.5183 (9) 0.027*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0325 (4) 0.0281 (4) 0.0293 (4) 0.0037 (3) 0.0133 (3) −0.0034 (3)
F2 0.0408 (4) 0.0331 (5) 0.0338 (4) 0.0006 (3) 0.0235 (3) 0.0031 (3)
O1 0.0263 (4) 0.0211 (5) 0.0221 (4) 0.0031 (3) 0.0096 (3) −0.0006 (3)
O2 0.0268 (4) 0.0238 (5) 0.0209 (4) 0.0045 (3) 0.0038 (3) 0.0029 (3)
N1 0.0247 (5) 0.0200 (5) 0.0177 (4) 0.0002 (4) 0.0061 (4) 0.0010 (4)
N2 0.0211 (4) 0.0196 (5) 0.0177 (5) −0.0005 (4) 0.0045 (3) 0.0005 (3)
C1 0.0263 (5) 0.0200 (6) 0.0173 (5) −0.0004 (4) 0.0045 (4) −0.0016 (4)
C2 0.0231 (5) 0.0168 (6) 0.0207 (5) −0.0026 (4) 0.0027 (4) −0.0006 (4)
C3 0.0240 (5) 0.0170 (6) 0.0214 (6) −0.0024 (4) 0.0025 (4) −0.0008 (4)
C4 0.0313 (6) 0.0247 (6) 0.0183 (5) −0.0058 (5) 0.0067 (4) −0.0015 (4)
C5 0.0234 (5) 0.0172 (6) 0.0175 (5) −0.0027 (4) 0.0028 (4) −0.0008 (4)
C6 0.0191 (5) 0.0235 (6) 0.0155 (5) 0.0010 (4) 0.0011 (4) −0.0003 (4)
C7 0.0210 (5) 0.0207 (6) 0.0143 (5) 0.0003 (4) 0.0011 (4) −0.0007 (4)
C8 0.0250 (5) 0.0221 (6) 0.0183 (5) 0.0029 (5) 0.0046 (4) −0.0010 (4)
C9 0.0281 (6) 0.0228 (6) 0.0242 (6) −0.0056 (5) 0.0063 (4) 0.0009 (4)
C10 0.0266 (6) 0.0227 (6) 0.0222 (6) −0.0022 (5) 0.0038 (4) 0.0035 (4)
C11 0.0292 (6) 0.0215 (6) 0.0193 (5) −0.0027 (5) 0.0015 (4) 0.0028 (4)
C12 0.0261 (6) 0.0199 (6) 0.0201 (5) 0.0020 (4) 0.0022 (4) −0.0014 (4)
C13 0.0290 (6) 0.0206 (6) 0.0236 (6) −0.0023 (5) 0.0081 (4) 0.0017 (4)
C14 0.0212 (5) 0.0221 (6) 0.0189 (5) 0.0012 (4) 0.0044 (4) 0.0013 (4)
C15 0.0248 (5) 0.0190 (6) 0.0244 (6) −0.0028 (4) 0.0075 (4) −0.0042 (4)
C16 0.0245 (5) 0.0295 (7) 0.0199 (5) −0.0006 (5) 0.0081 (4) 0.0005 (5)
C17 0.0261 (5) 0.0198 (6) 0.0177 (5) 0.0020 (4) 0.0047 (4) 0.0025 (4)

Geometric parameters (Å, º)

F1—C15 1.3706 (14) C4—H1c4 0.96
F2—C16 1.3648 (15) C5—C17 1.5116 (16)
O1—C6 1.3680 (14) C6—C7 1.4034 (16)
O1—H1 0.937 (16) C6—C12 1.3879 (16)
O2—C2 1.3628 (14) C7—C8 1.3962 (16)
O2—H2 0.903 (16) C8—C16 1.3780 (17)
N1—C13 1.4919 (14) C8—H1c8 0.96
N1—C14 1.4581 (15) C9—C13 1.5348 (15)
N1—C17 1.4867 (15) C9—H1c9 0.96
N2—C1 1.4694 (14) C9—H2c9 0.96
N2—C9 1.4689 (15) C10—C12 1.3916 (17)
N2—C14 1.4741 (13) C10—C16 1.3750 (17)
C1—C7 1.5089 (16) C10—H1c10 0.96
C1—H1c1 0.96 C11—H1c11 0.96
C1—H2c1 0.96 C12—H1c12 0.96
C2—C5 1.4070 (14) C13—H1c13 0.96
C2—C11 1.3918 (16) C13—H2c13 0.96
C3—C5 1.3928 (16) C14—H1c14 0.96
C3—C15 1.3761 (16) C14—H2c14 0.96
C3—H1c3 0.96 C17—H1c17 0.96
C4—C11 1.3902 (17) C17—H2c17 0.96
C4—C15 1.3789 (15)
C6—O1—H1 102.5 (10) N2—C9—H2c9 109.47
C2—O2—H2 104.6 (9) C13—C9—H1c9 109.47
C13—N1—C14 103.64 (8) C13—C9—H2c9 109.47
C13—N1—C17 111.71 (9) H1c9—C9—H2c9 114.55
C14—N1—C17 111.82 (9) C12—C10—C16 118.04 (11)
C1—N2—C9 112.60 (8) C12—C10—H1c10 120.98
C1—N2—C14 115.28 (9) C16—C10—H1c10 120.98
C9—N2—C14 102.96 (8) C2—C11—C4 120.53 (10)
N2—C1—C7 112.49 (9) C2—C11—H1c11 119.73
N2—C1—H1c1 109.47 C4—C11—H1c11 119.73
N2—C1—H2c1 109.47 C6—C12—C10 120.64 (11)
C7—C1—H1c1 109.47 C6—C12—H1c12 119.68
C7—C1—H2c1 109.47 C10—C12—H1c12 119.68
H1c1—C1—H2c1 106.28 N1—C13—C9 105.99 (9)
O2—C2—C5 121.43 (10) N1—C13—H1c13 109.47
O2—C2—C11 118.03 (9) N1—C13—H2c13 109.47
C5—C2—C11 120.53 (10) C9—C13—H1c13 109.47
C5—C3—C15 119.60 (10) C9—C13—H2c13 109.47
C5—C3—H1c3 120.2 H1c13—C13—H2c13 112.74
C15—C3—H1c3 120.2 N1—C14—N2 103.95 (8)
C11—C4—C15 117.95 (11) N1—C14—H1c14 109.47
C11—C4—H1c4 121.03 N1—C14—H2c14 109.47
C15—C4—H1c4 121.03 N2—C14—H1c14 109.47
C2—C5—C3 118.46 (10) N2—C14—H2c14 109.47
C2—C5—C17 121.24 (10) H1c14—C14—H2c14 114.48
C3—C5—C17 120.20 (9) F1—C15—C3 118.37 (9)
O1—C6—C7 121.16 (10) F1—C15—C4 118.77 (10)
O1—C6—C12 118.35 (10) C3—C15—C4 122.85 (11)
C7—C6—C12 120.48 (10) F2—C16—C8 118.27 (11)
C1—C7—C6 121.21 (10) F2—C16—C10 118.96 (11)
C1—C7—C8 120.01 (10) C8—C16—C10 122.77 (11)
C6—C7—C8 118.62 (10) N1—C17—C5 111.70 (9)
C7—C8—C16 119.41 (11) N1—C17—H1c17 109.47
C7—C8—H1c8 120.29 N1—C17—H2c17 109.47
C16—C8—H1c8 120.29 C5—C17—H1c17 109.47
N2—C9—C13 103.87 (9) C5—C17—H2c17 109.47
N2—C9—H1c9 109.47 H1c17—C17—H2c17 107.14

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···N2 0.937 (16) 1.756 (16) 2.6413 (12) 156.2 (14)
O2—H2···N1 0.903 (16) 1.821 (15) 2.6579 (12) 153.2 (13)
C11—H1c11···O1i 0.96 2.44 3.4001 (13) 174.43
C17—H2c17···O1ii 0.96 2.55 3.4837 (13) 166

Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2; (ii) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5264).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129–147.
  4. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  5. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact, Bonn, Germany.
  6. Chopra, D. & Guru Row, T. N. (2005). J. Mol. Struct. 733, 133–141.
  7. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  8. Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.
  9. Petříček, V., Dusěk, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.
  10. Rathore, R. S., Karthikeyan, N. S., Alekhya, Y., Sathiyanarayanan, K. & Aravindan, P. G. (2011). J. Chem. Sci. 123, 403–409.
  11. Rivera, A., Gallo, G. I., Gayón, M. E. & Joseph-Nathan, P. (1993). Synth. Commun. 23, 2921–2929.
  12. Rivera, A., Nerio, L. S., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2012). Acta Cryst. E68, o170–o171. [DOI] [PMC free article] [PubMed]
  13. Rivera, A., Sadat-Bernal, J., Ríos-Motta, J., Pojarová, M. & Dušek, M. (2011). Acta Cryst. E67, o2581. [DOI] [PMC free article] [PubMed]
  14. Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812040329/sj5264sup1.cif

e-68-o3043-sup1.cif (85.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812040329/sj5264Isup2.hkl

e-68-o3043-Isup2.hkl (110.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812040329/sj5264Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES