Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Sep 29;68(Pt 10):o3047. doi: 10.1107/S1600536812040470

7-Bromo-1-(3-fluoro­phenyl­sulfon­yl)-2-methyl­naphtho­[2,1-b]furan

Hong Dae Choi a, Pil Ja Seo a, Uk Lee b,*
PMCID: PMC3470396  PMID: 23125809

Abstract

In the title compound, C19H12BrFO3S, the 3-fluoro­phenyl ring makes a dihedral angle of 80.85 (5)° with the mean plane [r.m.s. deviation = 0.009 (2)Å] of the naphtho­furan fragment. In the crystal, mol­ecules are linked by slipped π–π inter­actions between the furan and the outer benzene rings of neighbouring mol­ecules [centroid–centroid distance = 3.756 (3) Å and slippage of 1.189 (3) Å].

Related literature  

For background information and the crystal structures of related compounds, see: Choi et al. (2008, 2011).graphic file with name e-68-o3047-scheme1.jpg

Experimental  

Crystal data  

  • C19H12BrFO3S

  • M r = 419.26

  • Triclinic, Inline graphic

  • a = 7.7141 (2) Å

  • b = 8.1619 (2) Å

  • c = 13.4046 (4) Å

  • α = 74.277 (2)°

  • β = 86.410 (2)°

  • γ = 89.044 (2)°

  • V = 810.80 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.69 mm−1

  • T = 173 K

  • 0.28 × 0.24 × 0.23 mm

Data collection  

  • Bruker SMART APEX II CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.573, T max = 0.746

  • 15010 measured reflections

  • 4031 independent reflections

  • 3483 reflections with I > 2σ(I)

  • R int = 0.047

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.075

  • S = 1.06

  • 4031 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536812040470/rk2381sup1.cif

e-68-o3047-sup1.cif (25KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812040470/rk2381Isup2.hkl

e-68-o3047-Isup2.hkl (197.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812040470/rk2381Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Blue-Bio Industry Regional Innovation Center (RIC08-06-07) at Dongeui University as an RIC program under the Ministry of Knowledge Economy and Busan city.

supplementary crystallographic information

Comment

As a part of our ongoing study of 7-bromo-2-methylnaphtho[2,1-b]furan derivatives containing 1-(4-methylphenylsulfonyl) (Choi et al., 2008) and 1-(4-fluorophenylsulfonyl) (Choi et al., 2011) substituents, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the naphthofuran unit is essentially planar, with a mean deviation of 0.009 (2)Å from the least-squares plane defined by the thirteen constituent atoms. The dihedral angle formed by the mean plane of the naphthofuran ring and the 3-fluorophenyl ring is 80.85 (5)°. In the crystal structure (Fig. 2), molecules are connected by slipped π···π interactions between the furan and outer benzene rings of neighbouring molecules, with a Cg1···Cg2i distance of 3.756 (3)Å and an interplanar distance of 3.563 (3)Å resulting in a slippage of 1.189 (3)Å (Cg1 and Cg2 are the centroids of the C1/C2/C11/O1/C12 furan ring and the C3–C8 benzene ring, respectively). Symmetry code: (i) -x+2, -y+1, -z+1.

Experimental

The 77% 3-chloroperoxybenzoic acid (336 mg, 1.5 mmol) was added in small portions to a stirred solution of 7-bromo-1-(3-fluorophenylsulfanyl)-2-methylnaphtho[2,1-b]furan (271 mg, 0.7 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 10 h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (benzene) to afford the title compound as a colourless solid - yield 67%, m.p. 472–473 K; Rf = 0.68 (benzene). Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95Å for aryl and 0.98Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl H atoms and Uiso(H) = 1.5Ueq(C) for methyl H atoms. The positions of methyl hydrogens were optimized rotationally.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A view of π···π interactions (dotted lines) in the crystal structure of the title compound. All H atoms were omitted for clarity. Symmetry code: (i) -x+2, -y+1, -z+1.

Crystal data

C19H12BrFO3S Z = 2
Mr = 419.26 F(000) = 420
Triclinic, P1 Dx = 1.717 Mg m3
Hall symbol: -P 1 Melting point = 472–473 K
a = 7.7141 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.1619 (2) Å Cell parameters from 7012 reflections
c = 13.4046 (4) Å θ = 2.6–28.3°
α = 74.277 (2)° µ = 2.69 mm1
β = 86.410 (2)° T = 173 K
γ = 89.044 (2)° Block, colourless
V = 810.80 (4) Å3 0.28 × 0.24 × 0.23 mm

Data collection

Bruker SMART APEX II CCD diffractometer 4031 independent reflections
Radiation source: rotating anode 3483 reflections with I > 2σ(I)
Graphite multilayer monochromator Rint = 0.047
Detector resolution: 10.0 pixels mm-1 θmax = 28.3°, θmin = 1.6°
φ– and ω–scans h = −10→10
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −10→10
Tmin = 0.573, Tmax = 0.746 l = −17→16
15010 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0258P)2 + 0.4345P] where P = (Fo2 + 2Fc2)/3
4031 reflections (Δ/σ)max = 0.001
227 parameters Δρmax = 0.49 e Å3
0 restraints Δρmin = −0.40 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.57980 (3) 0.18645 (3) 0.314671 (17) 0.03502 (8)
S1 0.84031 (6) 0.35008 (6) 0.82867 (4) 0.02420 (11)
F1 0.3382 (2) −0.0623 (2) 0.89171 (12) 0.0539 (4)
O1 0.90963 (19) 0.80950 (18) 0.64831 (11) 0.0290 (3)
O2 0.92123 (19) 0.21364 (19) 0.79427 (12) 0.0314 (3)
O3 0.90169 (19) 0.3885 (2) 0.91876 (11) 0.0325 (3)
C1 0.8517 (2) 0.5360 (2) 0.72789 (15) 0.0234 (4)
C2 0.8204 (2) 0.5642 (2) 0.61823 (15) 0.0225 (4)
C3 0.7631 (2) 0.4684 (2) 0.55178 (15) 0.0215 (4)
C4 0.7185 (3) 0.2941 (2) 0.58317 (15) 0.0261 (4)
H4 0.7272 0.2323 0.6538 0.031*
C5 0.6630 (3) 0.2119 (3) 0.51466 (16) 0.0275 (4)
H5 0.6325 0.0948 0.5376 0.033*
C6 0.6516 (2) 0.3023 (3) 0.41023 (16) 0.0253 (4)
C7 0.6938 (3) 0.4703 (3) 0.37573 (16) 0.0270 (4)
H7 0.6852 0.5286 0.3045 0.032*
C8 0.7502 (2) 0.5582 (2) 0.44463 (15) 0.0234 (4)
C9 0.7940 (3) 0.7335 (3) 0.40720 (16) 0.0274 (4)
H9 0.7845 0.7893 0.3357 0.033*
C10 0.8488 (3) 0.8229 (3) 0.47063 (16) 0.0276 (4)
H10 0.8790 0.9399 0.4456 0.033*
C11 0.8588 (2) 0.7340 (2) 0.57511 (16) 0.0247 (4)
C12 0.9047 (3) 0.6874 (3) 0.74099 (16) 0.0277 (4)
C13 0.9565 (3) 0.7507 (3) 0.82888 (19) 0.0394 (5)
H13A 1.0769 0.7176 0.8436 0.059*
H13B 0.8801 0.7012 0.8906 0.059*
H13C 0.9467 0.8751 0.8104 0.059*
C14 0.6173 (2) 0.2986 (3) 0.85656 (14) 0.0238 (4)
C15 0.5063 (3) 0.4128 (3) 0.88799 (16) 0.0289 (4)
H15 0.5463 0.5223 0.8879 0.035*
C16 0.3356 (3) 0.3642 (3) 0.91954 (17) 0.0354 (5)
H16 0.2575 0.4416 0.9404 0.043*
C17 0.2788 (3) 0.2043 (3) 0.92085 (17) 0.0363 (5)
H17 0.1623 0.1704 0.9431 0.044*
C18 0.3928 (3) 0.0953 (3) 0.88949 (17) 0.0349 (5)
C19 0.5630 (3) 0.1383 (3) 0.85604 (16) 0.0298 (4)
H19 0.6394 0.0612 0.8336 0.036*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.04802 (14) 0.03053 (13) 0.02960 (12) −0.00014 (9) −0.00906 (9) −0.01191 (9)
S1 0.0227 (2) 0.0285 (3) 0.0205 (2) 0.00142 (18) −0.00143 (18) −0.00511 (19)
F1 0.0640 (10) 0.0522 (9) 0.0498 (9) −0.0291 (8) 0.0038 (8) −0.0209 (7)
O1 0.0344 (8) 0.0268 (7) 0.0263 (7) −0.0069 (6) 0.0010 (6) −0.0084 (6)
O2 0.0297 (7) 0.0319 (8) 0.0309 (8) 0.0074 (6) −0.0006 (6) −0.0064 (6)
O3 0.0311 (7) 0.0439 (9) 0.0238 (7) −0.0008 (7) −0.0066 (6) −0.0101 (7)
C1 0.0226 (9) 0.0264 (10) 0.0206 (9) −0.0019 (7) 0.0018 (7) −0.0061 (8)
C2 0.0218 (9) 0.0231 (9) 0.0219 (9) 0.0006 (7) 0.0024 (7) −0.0055 (7)
C3 0.0180 (8) 0.0241 (9) 0.0217 (9) 0.0011 (7) 0.0024 (7) −0.0056 (7)
C4 0.0311 (10) 0.0240 (10) 0.0215 (9) 0.0004 (8) 0.0007 (8) −0.0039 (8)
C5 0.0335 (10) 0.0218 (10) 0.0264 (10) −0.0009 (8) −0.0005 (8) −0.0052 (8)
C6 0.0244 (9) 0.0295 (10) 0.0245 (10) 0.0013 (8) −0.0028 (8) −0.0114 (8)
C7 0.0288 (10) 0.0285 (10) 0.0223 (10) 0.0029 (8) −0.0028 (8) −0.0044 (8)
C8 0.0220 (9) 0.0249 (10) 0.0219 (9) 0.0014 (7) 0.0005 (7) −0.0047 (8)
C9 0.0302 (10) 0.0261 (10) 0.0224 (10) 0.0008 (8) −0.0013 (8) −0.0007 (8)
C10 0.0286 (10) 0.0228 (10) 0.0288 (10) −0.0038 (8) 0.0022 (8) −0.0030 (8)
C11 0.0233 (9) 0.0248 (10) 0.0263 (10) −0.0028 (7) 0.0017 (8) −0.0081 (8)
C12 0.0275 (10) 0.0310 (11) 0.0249 (10) −0.0034 (8) 0.0034 (8) −0.0090 (8)
C13 0.0503 (14) 0.0389 (13) 0.0328 (12) −0.0120 (11) −0.0007 (10) −0.0160 (10)
C14 0.0245 (9) 0.0287 (10) 0.0161 (9) −0.0011 (8) −0.0013 (7) −0.0021 (7)
C15 0.0287 (10) 0.0309 (11) 0.0250 (10) 0.0022 (8) −0.0013 (8) −0.0041 (8)
C16 0.0276 (10) 0.0470 (14) 0.0281 (11) 0.0073 (10) 0.0001 (9) −0.0050 (10)
C17 0.0250 (10) 0.0559 (15) 0.0252 (11) −0.0068 (10) −0.0041 (8) −0.0053 (10)
C18 0.0413 (12) 0.0402 (12) 0.0224 (10) −0.0150 (10) −0.0042 (9) −0.0056 (9)
C19 0.0363 (11) 0.0321 (11) 0.0209 (10) −0.0009 (9) −0.0005 (8) −0.0075 (8)

Geometric parameters (Å, º)

Br1—C6 1.8986 (19) C7—H7 0.9500
S1—O2 1.4358 (15) C8—C9 1.421 (3)
S1—O3 1.4363 (15) C9—C10 1.351 (3)
S1—C1 1.736 (2) C9—H9 0.9500
S1—C14 1.770 (2) C10—C11 1.398 (3)
F1—C18 1.352 (3) C10—H10 0.9500
O1—C12 1.365 (3) C12—C13 1.487 (3)
O1—C11 1.371 (2) C13—H13A 0.9800
C1—C12 1.367 (3) C13—H13B 0.9800
C1—C2 1.460 (3) C13—H13C 0.9800
C2—C11 1.378 (3) C14—C19 1.382 (3)
C2—C3 1.428 (3) C14—C15 1.386 (3)
C3—C4 1.412 (3) C15—C16 1.388 (3)
C3—C8 1.434 (3) C15—H15 0.9500
C4—C5 1.367 (3) C16—C17 1.379 (3)
C4—H4 0.9500 C16—H16 0.9500
C5—C6 1.402 (3) C17—C18 1.369 (3)
C5—H5 0.9500 C17—H17 0.9500
C6—C7 1.361 (3) C18—C19 1.380 (3)
C7—C8 1.406 (3) C19—H19 0.9500
O2—S1—O3 118.58 (9) C9—C10—C11 116.43 (19)
O2—S1—C1 109.57 (9) C9—C10—H10 121.8
O3—S1—C1 107.58 (9) C11—C10—H10 121.8
O2—S1—C14 107.07 (9) O1—C11—C2 111.44 (17)
O3—S1—C14 106.73 (9) O1—C11—C10 122.61 (18)
C1—S1—C14 106.70 (9) C2—C11—C10 125.94 (19)
C12—O1—C11 107.20 (15) O1—C12—C1 109.96 (17)
C12—C1—C2 107.40 (17) O1—C12—C13 113.53 (18)
C12—C1—S1 122.42 (15) C1—C12—C13 136.5 (2)
C2—C1—S1 130.10 (15) C12—C13—H13A 109.5
C11—C2—C3 118.08 (18) C12—C13—H13B 109.5
C11—C2—C1 104.00 (17) H13A—C13—H13B 109.5
C3—C2—C1 137.92 (18) C12—C13—H13C 109.5
C4—C3—C2 125.37 (18) H13A—C13—H13C 109.5
C4—C3—C8 117.97 (18) H13B—C13—H13C 109.5
C2—C3—C8 116.66 (17) C19—C14—C15 121.94 (19)
C5—C4—C3 121.73 (18) C19—C14—S1 118.52 (15)
C5—C4—H4 119.1 C15—C14—S1 119.23 (16)
C3—C4—H4 119.1 C14—C15—C16 118.7 (2)
C4—C5—C6 119.28 (19) C14—C15—H15 120.6
C4—C5—H5 120.4 C16—C15—H15 120.6
C6—C5—H5 120.4 C17—C16—C15 120.5 (2)
C7—C6—C5 121.39 (18) C17—C16—H16 119.8
C7—C6—Br1 119.44 (15) C15—C16—H16 119.8
C5—C6—Br1 119.15 (15) C18—C17—C16 118.9 (2)
C6—C7—C8 120.53 (18) C18—C17—H17 120.5
C6—C7—H7 119.7 C16—C17—H17 120.5
C8—C7—H7 119.7 F1—C18—C17 119.1 (2)
C7—C8—C9 119.75 (18) F1—C18—C19 118.0 (2)
C7—C8—C3 119.09 (18) C17—C18—C19 122.9 (2)
C9—C8—C3 121.16 (18) C18—C19—C14 117.1 (2)
C10—C9—C8 121.72 (19) C18—C19—H19 121.5
C10—C9—H9 119.1 C14—C19—H19 121.5
C8—C9—H9 119.1
O2—S1—C1—C12 −132.60 (17) C12—O1—C11—C2 0.1 (2)
O3—S1—C1—C12 −2.4 (2) C12—O1—C11—C10 179.98 (18)
C14—S1—C1—C12 111.81 (17) C3—C2—C11—O1 179.17 (16)
O2—S1—C1—C2 43.6 (2) C1—C2—C11—O1 −0.1 (2)
O3—S1—C1—C2 173.78 (17) C3—C2—C11—C10 −0.7 (3)
C14—S1—C1—C2 −72.00 (19) C1—C2—C11—C10 −179.99 (19)
C12—C1—C2—C11 0.1 (2) C9—C10—C11—O1 −178.91 (18)
S1—C1—C2—C11 −176.57 (15) C9—C10—C11—C2 1.0 (3)
C12—C1—C2—C3 −178.9 (2) C11—O1—C12—C1 0.0 (2)
S1—C1—C2—C3 4.4 (3) C11—O1—C12—C13 −179.86 (17)
C11—C2—C3—C4 −179.95 (18) C2—C1—C12—O1 0.0 (2)
C1—C2—C3—C4 −1.0 (4) S1—C1—C12—O1 176.92 (13)
C11—C2—C3—C8 0.0 (3) C2—C1—C12—C13 179.8 (2)
C1—C2—C3—C8 178.9 (2) S1—C1—C12—C13 −3.3 (4)
C2—C3—C4—C5 179.37 (18) O2—S1—C14—C19 8.63 (18)
C8—C3—C4—C5 −0.5 (3) O3—S1—C14—C19 −119.31 (16)
C3—C4—C5—C6 0.6 (3) C1—S1—C14—C19 125.89 (16)
C4—C5—C6—C7 −0.3 (3) O2—S1—C14—C15 −177.62 (15)
C4—C5—C6—Br1 178.52 (15) O3—S1—C14—C15 54.44 (18)
C5—C6—C7—C8 −0.1 (3) C1—S1—C14—C15 −60.36 (18)
Br1—C6—C7—C8 −178.92 (14) C19—C14—C15—C16 −0.1 (3)
C6—C7—C8—C9 179.91 (18) S1—C14—C15—C16 −173.67 (16)
C6—C7—C8—C3 0.2 (3) C14—C15—C16—C17 0.9 (3)
C4—C3—C8—C7 0.1 (3) C15—C16—C17—C18 −0.7 (3)
C2—C3—C8—C7 −179.79 (17) C16—C17—C18—F1 179.29 (19)
C4—C3—C8—C9 −179.58 (17) C16—C17—C18—C19 −0.3 (3)
C2—C3—C8—C9 0.5 (3) F1—C18—C19—C14 −178.59 (18)
C7—C8—C9—C10 −179.96 (19) C17—C18—C19—C14 1.0 (3)
C3—C8—C9—C10 −0.2 (3) C15—C14—C19—C18 −0.7 (3)
C8—C9—C10—C11 −0.5 (3) S1—C14—C19—C18 172.82 (15)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2381).

References

  1. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2009). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o1158. [DOI] [PMC free article] [PubMed]
  4. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o280. [DOI] [PMC free article] [PubMed]
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536812040470/rk2381sup1.cif

e-68-o3047-sup1.cif (25KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812040470/rk2381Isup2.hkl

e-68-o3047-Isup2.hkl (197.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812040470/rk2381Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES