Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Sep 29;68(Pt 10):o3057. doi: 10.1107/S1600536812039372

5-Chloro-2-(3,4,5-trimeth­oxy­phen­yl)-1,3-benzothia­zole

Sammer Yousuf a,*, Shazia Shah a, Nida Ambreen a, Khalid M Khan a, Shakil Ahmad a
PMCID: PMC3470404  PMID: 23125817

Abstract

In the title compound, C16H14ClNO3S, the dihedral angle between the almost-planar benzothia­zole ring system [maximum deviation = 0.012 (3) Å] and the aromatic ring of the trimeth­oxy­phenyl group is 15.56 (6)°. In the crystal, the mol­ecules are arranged into layers parallel to the bc plane, held together only by weak van der Waals forces.

Related literature  

For the biological activites of benzothia­zole compounds, see: Chohan et al. (2003); Hutchinson et al. (2002); Chua et al. (1999); Burger & Sawhney (1968); Palmer et al. (1971). For the crystal structures of related benzothia­zole derivatives, see: Yousuf et al. (2012a ,b ).graphic file with name e-68-o3057-scheme1.jpg

Experimental  

Crystal data  

  • C16H14ClNO3S

  • M r = 335.79

  • Triclinic, Inline graphic

  • a = 4.0656 (6) Å

  • b = 7.7855 (11) Å

  • c = 12.2420 (17) Å

  • α = 96.263 (3)°

  • β = 91.380 (3)°

  • γ = 97.228 (3)°

  • V = 381.84 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 273 K

  • 0.52 × 0.15 × 0.09 mm

Data collection  

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.820, T max = 0.965

  • 4277 measured reflections

  • 2816 independent reflections

  • 2621 reflections with I > 2σ(I)

  • R int = 0.014

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.080

  • S = 1.07

  • 2816 reflections

  • 202 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983), with 1402 Friedel pairs

  • Flack parameter: 0.12 (6)

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812039372/rz5005sup1.cif

e-68-o3057-sup1.cif (23.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812039372/rz5005Isup2.hkl

e-68-o3057-Isup2.hkl (138.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812039372/rz5005Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to OPCW, The Netherlands, and the Higher Education Commission (HEC), Pakistan (project No. 1910), for their financial support.

supplementary crystallographic information

Comment

Benzothiazole is a well known class of sulfur- and nitrogen-containing heterocyclic aromatic molecules with a broad range of biological activities, such as antimicrobial, antitumoral, antimalarial and antitubercular (Chohan et al., 2003; Hutchinson et al., 2002; Chua et al., 1999; Burger & Sawhney, 1968; Palmer et al., 1971). The title compound is a benzothiazole derivative synthesized as a part of our ongoing project on bioactive hetereocyclic compounds.

The molecular structure of the title compound (Fig. 1) is similar to that reported for the recently published compounds 5-chloro-2-phenyl-1,3-benzothiazole (Yousuf et al., 2012a) and 2-(5-chloro-1,3-benzothiazol-2-yl)-4-methoxyphenol (Yousuf et al., 2012b) with the difference that the phenyl or p-methoxyphenol group is replaced by a trimethoxyphenyl group. The dihedral angle between the almost planar benzothiazole ring system (S1/N1/C1–C7) and the benzene ring of the trimethoxyphenyl group (C8–C13) is 15.56 (6)°. Bond lengths and angles are unexceptional. In the crystal structure the molecules are arranged into layers parallel to the bc plane (Fig. 2) held together only by weak van der Waals forces.

Experimental

A mixture of 2-amino-4-cholorobenzenethiol (0.159 g, 1 mmol), 3,4,5-trimethoxybenz-aldehyde (0.196 g, 1 mmol), sodium metabisulfite (0.2 g) and N,N-dimethylformamide (10 ml) was refluxed for 2 h in a round-bottomed flask. The completion of reaction was monitored by TLC. After cooling the mixture to room temperature, cold water was added to obtain a white precipitate. Crystallization from ethanol afforded crystals of the title compound (0.298 g, 88.9% yield) found suitable for X-ray diffraction studies.

Refinement

H atoms were positioned geometrically with C—H = 0.96 or 0.93 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. A rotating group model was applied to methyl groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of title compound with displacement ellipsoids drawn at 30% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the title compound. Hydrogen atoms are omitted for clarity.

Crystal data

C16H14ClNO3S Z = 1
Mr = 335.79 F(000) = 174
Triclinic, P1 Dx = 1.460 Mg m3
Hall symbol: P 1 Mo Kα radiation, λ = 0.71073 Å
a = 4.0656 (6) Å Cell parameters from 2110 reflections
b = 7.7855 (11) Å θ = 1.7–25.5°
c = 12.2420 (17) Å µ = 0.40 mm1
α = 96.263 (3)° T = 273 K
β = 91.380 (3)° Plate, colourless
γ = 97.228 (3)° 0.52 × 0.15 × 0.09 mm
V = 381.84 (9) Å3

Data collection

Bruker SMART APEX CCD diffractometer 2816 independent reflections
Radiation source: fine-focus sealed tube 2621 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.014
ω scans θmax = 25.5°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −4→4
Tmin = 0.820, Tmax = 0.965 k = −9→9
4277 measured reflections l = −14→14

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034 H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0384P)2 + 0.0343P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
2816 reflections Δρmax = 0.14 e Å3
202 parameters Δρmin = −0.16 e Å3
3 restraints Absolute structure: Flack (1983), with 1402 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.12 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.46803 (14) 0.91830 (7) 0.20220 (5) 0.05768 (18)
Cl1 0.9092 (2) 0.29518 (10) 0.41340 (7) 0.0924 (3)
O1 −0.0441 (5) 1.1670 (2) −0.14201 (16) 0.0662 (5)
O2 0.0285 (5) 0.9542 (3) −0.32262 (15) 0.0703 (6)
O3 0.2731 (5) 0.6534 (2) −0.31396 (14) 0.0670 (5)
N1 0.4815 (5) 0.6095 (3) 0.10078 (16) 0.0510 (5)
C1 0.5921 (6) 0.6053 (3) 0.2087 (2) 0.0483 (6)
C2 0.6876 (8) 0.4599 (4) 0.2507 (2) 0.0603 (7)
H2A 0.6804 0.3539 0.2070 0.072*
C3 0.7927 (7) 0.4782 (4) 0.3588 (2) 0.0616 (7)
C4 0.8097 (7) 0.6314 (4) 0.4269 (2) 0.0651 (8)
H4A 0.8842 0.6378 0.4999 0.078*
C5 0.7142 (8) 0.7758 (4) 0.3852 (2) 0.0651 (8)
H5A 0.7238 0.8813 0.4296 0.078*
C6 0.6036 (6) 0.7615 (3) 0.2761 (2) 0.0499 (6)
C7 0.4065 (5) 0.7623 (3) 0.08620 (18) 0.0443 (5)
C8 0.2955 (5) 0.8118 (3) −0.01945 (19) 0.0436 (5)
C9 0.1638 (6) 0.9681 (3) −0.0251 (2) 0.0479 (5)
H9A 0.1328 1.0395 0.0388 0.057*
C10 0.0797 (6) 1.0154 (3) −0.1272 (2) 0.0495 (6)
C11 0.1223 (6) 0.9078 (3) −0.2224 (2) 0.0523 (6)
C12 0.2466 (6) 0.7500 (3) −0.21641 (19) 0.0498 (6)
C13 0.3346 (6) 0.7029 (3) −0.11455 (19) 0.0496 (5)
H13A 0.4198 0.5984 −0.1100 0.060*
C14 −0.1064 (8) 1.2779 (4) −0.0479 (3) 0.0675 (7)
H14A −0.2101 1.3735 −0.0699 0.101*
H14B 0.0992 1.3218 −0.0085 0.101*
H14C −0.2508 1.2140 −0.0014 0.101*
C15 0.2896 (9) 1.0281 (4) −0.3824 (2) 0.0788 (9)
H15A 0.2008 1.0805 −0.4421 0.118*
H15B 0.4177 0.9390 −0.4109 0.118*
H15C 0.4291 1.1154 −0.3349 0.118*
C16 0.4033 (8) 0.4926 (4) −0.3130 (2) 0.0722 (8)
H16A 0.4046 0.4368 −0.3869 0.108*
H16B 0.2677 0.4185 −0.2695 0.108*
H16C 0.6258 0.5138 −0.2820 0.108*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0794 (4) 0.0528 (4) 0.0413 (3) 0.0137 (3) −0.0038 (3) 0.0030 (3)
Cl1 0.1234 (7) 0.0817 (5) 0.0763 (6) 0.0143 (5) −0.0310 (5) 0.0349 (4)
O1 0.0760 (13) 0.0611 (11) 0.0673 (12) 0.0246 (10) −0.0039 (9) 0.0170 (9)
O2 0.0682 (13) 0.0986 (15) 0.0487 (11) 0.0164 (11) −0.0162 (9) 0.0271 (10)
O3 0.0937 (14) 0.0661 (12) 0.0416 (10) 0.0188 (10) −0.0110 (9) 0.0008 (8)
N1 0.0684 (13) 0.0473 (11) 0.0368 (10) 0.0066 (9) −0.0086 (9) 0.0065 (8)
C1 0.0522 (14) 0.0512 (14) 0.0404 (14) −0.0003 (11) −0.0047 (10) 0.0100 (11)
C2 0.0778 (18) 0.0532 (15) 0.0498 (15) 0.0072 (13) −0.0096 (13) 0.0102 (12)
C3 0.0693 (18) 0.0652 (18) 0.0525 (17) 0.0033 (14) −0.0078 (13) 0.0252 (14)
C4 0.0791 (19) 0.079 (2) 0.0365 (14) 0.0035 (16) −0.0100 (13) 0.0120 (13)
C5 0.091 (2) 0.0690 (18) 0.0334 (13) 0.0088 (16) −0.0050 (13) −0.0003 (12)
C6 0.0539 (14) 0.0541 (15) 0.0407 (13) 0.0045 (11) −0.0001 (11) 0.0041 (11)
C7 0.0453 (13) 0.0460 (13) 0.0406 (13) 0.0009 (10) 0.0003 (10) 0.0056 (10)
C8 0.0436 (13) 0.0464 (13) 0.0405 (12) 0.0005 (10) −0.0017 (9) 0.0106 (10)
C9 0.0500 (13) 0.0459 (13) 0.0467 (13) 0.0018 (10) −0.0002 (10) 0.0058 (10)
C10 0.0435 (13) 0.0495 (13) 0.0579 (15) 0.0050 (10) −0.0029 (11) 0.0189 (11)
C11 0.0505 (13) 0.0602 (15) 0.0467 (14) 0.0046 (11) −0.0084 (10) 0.0139 (11)
C12 0.0533 (14) 0.0553 (14) 0.0403 (13) 0.0045 (11) −0.0052 (10) 0.0076 (10)
C13 0.0573 (14) 0.0473 (13) 0.0446 (13) 0.0069 (11) −0.0048 (10) 0.0084 (10)
C14 0.0626 (16) 0.0536 (15) 0.088 (2) 0.0140 (12) 0.0002 (14) 0.0110 (13)
C15 0.099 (2) 0.087 (2) 0.0558 (17) 0.0127 (18) −0.0040 (16) 0.0311 (15)
C16 0.093 (2) 0.0726 (19) 0.0516 (16) 0.0205 (16) −0.0017 (15) −0.0021 (14)

Geometric parameters (Å, º)

S1—C6 1.731 (3) C5—H5A 0.9300
S1—C7 1.756 (2) C7—C8 1.466 (3)
Cl1—C3 1.750 (3) C8—C13 1.388 (3)
O1—C10 1.368 (3) C8—C9 1.397 (3)
O1—C14 1.410 (4) C9—C10 1.388 (3)
O2—C11 1.375 (3) C9—H9A 0.9300
O2—C15 1.403 (3) C10—C11 1.387 (4)
O3—C12 1.354 (3) C11—C12 1.395 (3)
O3—C16 1.420 (3) C12—C13 1.389 (3)
N1—C7 1.294 (3) C13—H13A 0.9300
N1—C1 1.391 (3) C14—H14A 0.9600
C1—C2 1.387 (4) C14—H14B 0.9600
C1—C6 1.388 (3) C14—H14C 0.9600
C2—C3 1.368 (4) C15—H15A 0.9600
C2—H2A 0.9300 C15—H15B 0.9600
C3—C4 1.372 (4) C15—H15C 0.9600
C4—C5 1.378 (4) C16—H16A 0.9600
C4—H4A 0.9300 C16—H16B 0.9600
C5—C6 1.387 (4) C16—H16C 0.9600
C6—S1—C7 88.87 (11) C8—C9—H9A 120.4
C10—O1—C14 118.2 (2) O1—C10—C11 115.7 (2)
C11—O2—C15 114.8 (2) O1—C10—C9 124.0 (2)
C12—O3—C16 118.1 (2) C11—C10—C9 120.4 (2)
C7—N1—C1 110.9 (2) O2—C11—C10 119.6 (2)
C2—C1—C6 120.0 (2) O2—C11—C12 120.0 (2)
C2—C1—N1 124.9 (2) C10—C11—C12 120.3 (2)
C6—C1—N1 115.1 (2) O3—C12—C13 124.8 (2)
C3—C2—C1 117.5 (3) O3—C12—C11 115.6 (2)
C3—C2—H2A 121.2 C13—C12—C11 119.5 (2)
C1—C2—H2A 121.2 C8—C13—C12 120.0 (2)
C2—C3—C4 123.7 (3) C8—C13—H13A 120.0
C2—C3—Cl1 118.0 (2) C12—C13—H13A 120.0
C4—C3—Cl1 118.3 (2) O1—C14—H14A 109.5
C3—C4—C5 118.8 (3) O1—C14—H14B 109.5
C3—C4—H4A 120.6 H14A—C14—H14B 109.5
C5—C4—H4A 120.6 O1—C14—H14C 109.5
C4—C5—C6 119.1 (3) H14A—C14—H14C 109.5
C4—C5—H5A 120.5 H14B—C14—H14C 109.5
C6—C5—H5A 120.5 O2—C15—H15A 109.5
C5—C6—C1 120.9 (2) O2—C15—H15B 109.5
C5—C6—S1 129.3 (2) H15A—C15—H15B 109.5
C1—C6—S1 109.74 (19) O2—C15—H15C 109.5
N1—C7—C8 124.4 (2) H15A—C15—H15C 109.5
N1—C7—S1 115.40 (17) H15B—C15—H15C 109.5
C8—C7—S1 120.09 (17) O3—C16—H16A 109.5
C13—C8—C9 120.5 (2) O3—C16—H16B 109.5
C13—C8—C7 118.58 (19) H16A—C16—H16B 109.5
C9—C8—C7 120.9 (2) O3—C16—H16C 109.5
C10—C9—C8 119.2 (2) H16A—C16—H16C 109.5
C10—C9—H9A 120.4 H16B—C16—H16C 109.5
C7—N1—C1—C2 179.2 (2) S1—C7—C8—C9 −15.0 (3)
C7—N1—C1—C6 −0.9 (3) C13—C8—C9—C10 −1.5 (3)
C6—C1—C2—C3 −0.4 (4) C7—C8—C9—C10 176.2 (2)
N1—C1—C2—C3 179.5 (3) C14—O1—C10—C11 177.3 (2)
C1—C2—C3—C4 −0.3 (4) C14—O1—C10—C9 −3.4 (3)
C1—C2—C3—Cl1 179.2 (2) C8—C9—C10—O1 −178.5 (2)
C2—C3—C4—C5 0.4 (5) C8—C9—C10—C11 0.7 (3)
Cl1—C3—C4—C5 −179.1 (2) C15—O2—C11—C10 100.9 (3)
C3—C4—C5—C6 0.1 (5) C15—O2—C11—C12 −81.8 (3)
C4—C5—C6—C1 −0.8 (4) O1—C10—C11—O2 −2.6 (3)
C4—C5—C6—S1 179.7 (2) C9—C10—C11—O2 178.1 (2)
C2—C1—C6—C5 0.9 (4) O1—C10—C11—C12 −179.9 (2)
N1—C1—C6—C5 −179.0 (2) C9—C10—C11—C12 0.7 (3)
C2—C1—C6—S1 −179.5 (2) C16—O3—C12—C13 −0.7 (4)
N1—C1—C6—S1 0.6 (3) C16—O3—C12—C11 179.0 (2)
C7—S1—C6—C5 179.4 (3) O2—C11—C12—O3 1.6 (3)
C7—S1—C6—C1 −0.09 (18) C10—C11—C12—O3 178.9 (2)
C1—N1—C7—C8 177.3 (2) O2—C11—C12—C13 −178.8 (2)
C1—N1—C7—S1 0.8 (3) C10—C11—C12—C13 −1.5 (3)
C6—S1—C7—N1 −0.43 (19) C9—C8—C13—C12 0.8 (3)
C6—S1—C7—C8 −177.11 (19) C7—C8—C13—C12 −177.0 (2)
N1—C7—C8—C13 −13.6 (3) O3—C12—C13—C8 −179.7 (2)
S1—C7—C8—C13 162.74 (17) C11—C12—C13—C8 0.7 (3)
N1—C7—C8—C9 168.6 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ5005).

References

  1. Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Burger, A. & Sawhney, S. N. (1968). J. Med. Chem. 11, 270–273. [DOI] [PubMed]
  3. Chohan, Z. H., Pervez, H., Scozzafava, A. & Supuran, C. T. (2003). J. Chem. Soc. Pak. 25, 308–313.
  4. Chua, M. S., Shi, D. F., Wrigley, S., Bradshaw, T. D., Hutchinson, I., Nicholas, P., Barret, D. A., Stanley, L. A. & Stevens, M. F. G. (1999). J. Med. Chem. 42, 381–392. [DOI] [PubMed]
  5. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  6. Hutchinson, I., Jennings, S. A., Vishnuvajjala, B. R., Wetsell, A. D. & Stevens, M. F. G. (2002). J. Med. Chem. 45, 744–747. [DOI] [PubMed]
  7. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  8. Palmer, P. J., Trigg, R. B. & Warrington, J. V. (1971). J. Med. Chem. 14, 248–251. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Yousuf, S., Shah, S., Ambreen, N., Khan, K. M. & Ahmad, S. (2012a). Acta Cryst. E68, o2877. [DOI] [PMC free article] [PubMed]
  12. Yousuf, S., Shah, S., Ambreen, N., Khan, K. M. & Ahmed, S. (2012b). Acta Cryst. E68, o2799. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812039372/rz5005sup1.cif

e-68-o3057-sup1.cif (23.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812039372/rz5005Isup2.hkl

e-68-o3057-Isup2.hkl (138.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812039372/rz5005Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES