Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Oct;79(20):6137–6141. doi: 10.1073/pnas.79.20.6137

Conformational flexibility in the active sites of aspartyl proteinases revealed by a pepstatin fragment binding to penicillopepsin.

M N James, A Sielecki, F Salituro, D H Rich, T Hofmann
PMCID: PMC347074  PMID: 6755464

Abstract

Crystals of the molecular complex between the esterified tripeptide fragment of pepstatin and the aspartyl proteinase penicillopepsin are isomorphous with crystals of native penicillopepsin. The difference electron-density map at 1.8-A resolution, computed by using the amplitude differences and refined phases of reflections from the crystal of native penicillopepsin, unambiguously showed the binding mode of isovaleryl-Val-Val-StaOEt, where StaOEt is the ethyl ester of statine [(4S,3S)-4-amino-3-hydroxyl-6-methylheptanoic acid]. In addition, a major conformational change in penicillopepsin involving the large beta loop of residues from Trp-71 to Gly-83 (the so-called "flap" region) occurs as a result of this inhibitor binding. This structural movement provides the first confirmation of the importance of enzyme flexibility in the aspartyl proteinase mechanism. The 3-hydroxyl group of the Statine residue and the carbonyl oxygen atom of the ethyl ester are situated on either side of the approximate plane containing the hydrogen-bonded carboxyl groups of Asp-33 and Asp-213. The observed binding mode of the pepstatin tripeptide fragment is similar to that predicted for the binding of good substrates with penicillopepsin [James, M. N. G. (1980) Can. J. Biochem. 58, 251-271].

Full text

PDF
6137

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Fruton J. S. Fluorescence studies on the active sites of proteinases. Mol Cell Biochem. 1980 Sep 15;32(2):105–114. doi: 10.1007/BF00227803. [DOI] [PubMed] [Google Scholar]
  2. Fruton J. S. The mechanism of the catalytic action of pepsin and related acid proteinases. Adv Enzymol Relat Areas Mol Biol. 1976;44:1–36. doi: 10.1002/9780470122891.ch1. [DOI] [PubMed] [Google Scholar]
  3. Hendrickson W. A. Radiation damage in protein crystallography. J Mol Biol. 1976 Sep 25;106(3):889–893. doi: 10.1016/0022-2836(76)90271-0. [DOI] [PubMed] [Google Scholar]
  4. Hsu I. N., Delbaere L. T., James M. N., Hofmann T. Penicillopepsin from Penicillium janthinellum crystal structure at 2.8 A and sequence homology with porcine pepsin. Nature. 1977 Mar 10;266(5598):140–145. doi: 10.1038/266140a0. [DOI] [PubMed] [Google Scholar]
  5. Hsu I. N., Delbaere L. T., James M. N., Hofmann T. Penicillopepsin: 2.8 A structure, active site conformation and mechanistic implications. Adv Exp Med Biol. 1977;95:61–81. doi: 10.1007/978-1-4757-0719-9_5. [DOI] [PubMed] [Google Scholar]
  6. James M. N., Hsu I. N., Delbaere L. T. Mechanism of acid protease catalysis based on the crystal structure of penicillopepsin. Nature. 1977 Jun 30;267(5614):808–813. doi: 10.1038/267808a0. [DOI] [PubMed] [Google Scholar]
  7. Janin J., Wodak S. Conformation of amino acid side-chains in proteins. J Mol Biol. 1978 Nov 5;125(3):357–386. doi: 10.1016/0022-2836(78)90408-4. [DOI] [PubMed] [Google Scholar]
  8. Kelly J. A., Sielecki A. R., Sykes B. D., James M. N., Phillips D. C. X-ray crystallography of the binding of the bacterial cell wall trisaccharide NAM-NAG-NAM to lysozyme. Nature. 1979 Dec 20;282(5741):875–878. doi: 10.1038/282875a0. [DOI] [PubMed] [Google Scholar]
  9. Marciniszyn J., Jr, Hartsuck J. A., Tang J. Mode of inhibition of acid proteases by pepstatin. J Biol Chem. 1976 Nov 25;251(22):7088–7094. [PubMed] [Google Scholar]
  10. Marshall G. R. Structure--activity relations of antagonists of the renin--angiotensin system. Fed Proc. 1976 Nov;35(13):2494–2501. [PubMed] [Google Scholar]
  11. Morishima H., Takita T., Umezawa H. The chemical synthesis of pepstatin A. J Antibiot (Tokyo) 1972 Sep;25(9):551–552. doi: 10.7164/antibiotics.25.551. [DOI] [PubMed] [Google Scholar]
  12. Rich D. H., Sun E. T., Ulm E. Synthesis of analogues of the carboxyl protease inhibitor pepstatin. Effects of structure on inhibition of pepsin and renin. J Med Chem. 1980 Jan;23(1):27–33. doi: 10.1021/jm00175a006. [DOI] [PubMed] [Google Scholar]
  13. Schechter I., Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun. 1967 Apr 20;27(2):157–162. doi: 10.1016/s0006-291x(67)80055-x. [DOI] [PubMed] [Google Scholar]
  14. Takahashi M., Hofmann T. Acyl intermediates in penicillopepsin-catalysed reactions and a discussion of the mechanism of action of pepsins. Biochem J. 1975 Jun;147(3):549–563. doi: 10.1042/bj1470549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Umezawa H., Aoyagi T., Morishima H., Matsuzaki M., Hamada M. Pepstatin, a new pepsin inhibitor produced by Actinomycetes. J Antibiot (Tokyo) 1970 May;23(5):259–262. doi: 10.7164/antibiotics.23.259. [DOI] [PubMed] [Google Scholar]
  16. Wang T. T., Hofmann T. Acyl and amino intermediates in penicillopepsin-catalysed reactions and activation by nonsubstrate peptides. Can J Biochem. 1977 Apr;55(4):286–294. doi: 10.1139/o77-040. [DOI] [PubMed] [Google Scholar]
  17. Wang T. T., Hofmann T. Acyl and amino intermediates in reactions catalysed by pig pepsin. Analysis of transpeptidation products. Biochem J. 1976 Mar 1;153(3):691–699. doi: 10.1042/bj1530691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Workman R. J., Burkitt D. W. Pepsin inhibition by a high specific activity radioiodinated derivative of pepstatin. Arch Biochem Biophys. 1979 Apr 15;194(1):157–164. doi: 10.1016/0003-9861(79)90605-2. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES