Skip to main content
NIHPA Author Manuscripts logoLink to NIHPA Author Manuscripts
. Author manuscript; available in PMC: 2012 Oct 15.
Published in final edited form as: Methods. 2006 Aug;39(4):342–355. doi: 10.1016/j.ymeth.2006.06.015

Atomic resolution structures in nuclear transport

Katherine E Süel 1, Ahmet E Cansizoglu 1, Yuh Min Chook 1,*
PMCID: PMC3471385  NIHMSID: NIHMS403857  PMID: 16938467

Abstract

There are currently at least 53 structures of components of nuclear transport in the Protein Databank. In addition to providing critical insights into molecular mechanisms of nuclear transport, these atomic resolution structures provide a large body of information that could guide biochemical and cell biological analyses involving nuclear transport proteins. This paper catalogs 53 crystal and NMR structures of nuclear transport proteins, with the emphasis on providing information useful for mutagenesis and overexpression of recombinant proteins.

1. Introduction

High resolution structures of macromolecular complexes are necessary to understand molecular mechanisms of cellular processes. The importance of structures is particularly evident in the cellular process of nucleocytoplasmic transport. The nuclear transport machinery consists of a large number of proteins that include components of the nuclear pore complex (nucleoporins), transport factors that recognize import or export substrates (Karyopherins/Importins/Exportins and TAP), Ran, its transporter NTF2 and its regulators, RanBP1, RanGAP and RanGEF. Macromolecular interactions in nuclear transport are complex. Each protein generally contacts multiple macromolecular ligands, binding to different partners in the cytoplasm versus the nucleus. Partner-switching in the different subcellular compartments is also frequently accompanied with large conformational changes in the proteins. High resolution structures of nuclear transport complexes have been crucial in revealing how a transport factor recognizes its ligands and how structural plasticity plays a central role in the different steps of nuclear import and export.

High resolution structures that have been determined in nuclear transport include those of Kapβs, Kapαs, Ran and its regulators RanGAP, RanGEF, RanBP1 and NTF2, mRNA export factor TAP and nucleoporins. The list of Kapβ structures includes nine Kapβ1/Impβ structures (unliganded, Ran-, substrate- and nucleoporin-complexes), two Kapβ2/Transportin structures, two Cse1 structures and a structure of a small Crm1 fragment. A large number of Kapα structures are available, including nine of mouse Kapα and five of the yeast homolog Kap60p, providing insight into the recognition of a variety of classical-NLSs and also nucleoporins such as Nup50 and Nup2p. Ran, its regulators RanBP1, NTF2, RanGAP and RanGEF as well as complexes involving these proteins are also well represented with a total of 12 structures. Structures in mRNA export include eight structures of TAP or its yeast homolog Mex67p, and finally, there are currently five structures of individual nucleoporin domains.

Other than their important roles in revealing molecular mechanisms of cellular processes, high resolution structures of macromolecular complexes also provide tremendous resources and tools for biochemical and cell biological experimental design. Structures could provide critical guidance in mutagenesis studies, especially when the aim is to disrupt specific interactions. Structure determination efforts, which require large amounts of proteins also provide very useful information about overexpression and purification of recombinant proteins.

This paper strives to catalog a comprehensive list of high resolution structures (mostly crystal structures) in nuclear transport in Tables 16 and Figs. 16. We have tabulated information about the identity of successful protein constructs for each structure as well as residues that are observed in those structures, to guide production of recombinant proteins. Many proteins involved in nuclear transport contain multiple modular and globular domains (such as TAP and nucleoporins), and knowledge of where individual domains begin and end obtained from the structures will allow design of protein constructs to optimize both folding and function of those domains. In contrast to the common globular proteins, both Kapα and Kapβ proteins contain multiple HEAT/ARM repeats such that these proteins are either elongated or spiral-shape. More importantly, every single HEAT repeat helix in these proteins contributes to the extended hydrophobic cores of the proteins. Thus, it is not trivial to generate deletion mutants involving HEAT/ARM repeats without interfering with the folding or solubility of the proteins. Structures of karyopherin fragments summarized here should provide information on the few deletion mutants that have been overexpressed successfully. Many of the structures tabulated in this paper are those of complexes of two or more proteins. These structures are very informative as they reveal the chemical and physical nature of the contact interfaces. We have also included contact residues in individual binding partners seen in structures of complexes, and also information on published interface mutants that disrupt specific protein–protein interactions. Such structural and biochemical data should aid significantly in mutagenesis analysis especially to disrupt specific functions in this large group of proteins.

Table 1.

Crystal structures of Kapβ1 complexes

Structure PDB-ID Ref. Organism Resolution
(Å)
Protein constructs
in crystals
Residues in
model
Domains/motifs Contact residues
(molecule 1)
Contact residues
(molecule 2)
Contact type Disruptive interface
mutants
Kap95p-RanGTP 2BKU [1] Kap95p: yeast 2.7 Kap95p: 1–861 Kap95p: 1–861 β1: Kap95p: Ran: Ran: K37D/K152A binds
HEAT repeats I14 L75 HP* Kap95p, but is unable to
Ran: dog Ran: 1–176 Ran: 9–176 K66 D77 Polar displace IBB
N67 D77 Polar
E164 R110 Polar
E288 R140 Polar
E295 R140 Polar
E295 K141 Polar
W345 R140 HP*
N515 N156 Polar
Q570 R29 Polar
E615 K37 Polar
D616 K37 Polar
D617 K152 Polar
Q650 K37 Polar

Kapβ1-RanGppNHp 1IBR [2] β1: human 2.3 β1: 1–462 β1 (chain B): β1: β1: Ran:
2–459 HEAT repeats L59 V111 HP*
Ran: human Ran: 1–216 K62 D77 Polar
β1 (chain D): K68 D107 Polar
2–439 D160 R110 Polar
R232 E113 Polar
Ran: 9–176 E281 R140 Polar
E281 K141 Polar
D288 R140 Polar
D338 R166 Polar

Kapβ1 1GCJ [3] Mouse 2.6 1–449 1–449 HEAT repeats

Kapβ1-IBBKapα 1QGK [4] β1: human 2.5 β1: 1–867 β1: 1–867 β1: β1: α: β1:
HEAT repeats E281 R13 Polar W864 (~35-fold)
α: 11–54 α: 11–54 α: IBB D288 R13 Polar
D339 K20 Polar W864/W342
D340 K20 Polar W864/W430
W342 R13 HP* W864/W472
W342 L14 HP* (~400-fold)
K346 F17 HP*
V350 R13 HP* W342/W430/W864
M388 K18 HP* W342/W472/W864
D426 K18 Polar W430/W472/W864
T427 K18 Polar (~950-fold)
W430 K18 HP*
1QGR 2.3 β1: 1–867 β1: 1–614, N469 N19 Polar [5]
621–867 W472 N19 HP*
α: 11–54 W472 K22 HP*
α: 27–54 E530 R31 Polar
R593 N35 Polar
D627 R28 Polar
D627 R31 Polar
M630 I32 HP*
D676 R39 Polar
E767 K43 Polar
D824 R51 Polar
W864 R51 HP*
W864 V53 HP*

Kapβ1-PTHrP 1M5N [6] Human 2.9 β1: 1–485 β1: 1–485 β1: β1: PTHrP:
HEAT repeats I295 K93 HP*
PTHrP: 67–94 PTHrP: 67–94 W430 P86 HP*
W472 K89 HP*

Kapβ1-SREBP-2 1UKL [7] β1: mouse 3.0 β1: 1–876 β1: 1–876 β1: β1: SREBP-2:
HEAT repeats I295 Y379 (D) HP*
SREBP-2: human SREBP-2: 343–403 SREBP-2: 343–403 F752 Y376 (C) HP*
SREBP-2: F752 Y379 (C) HP*
basic helix D753 K372 (C) Polar
–loop-helix D756 R371 (C) Polar
leucine zipper D812 K378 (C) Polar

Kapβ1- 1F59 [8] β1: human 2.8 β1: 1–442 β1: 1–440 β1: β1: FxFG: β1: I178D
   Nsp1p I HEAT repeats L174 F16 HP*
Nsp1p: yeast Nsp1p: FxFG: Nsp1p 8–20 and 41–48 I178 F16 HP*
497–608 F217 F14 HP*
F217 F16 HP*
I218 F16 HP*
Y255 F46 HP*
1O6O 2.8 β1: 1–442 β1: 2–440
Nsp1p: FxFG: 9–14
497–608

Kapβ1-GLFG 1O6P [9] β1: human 2.8 β1: 1–442 β1: 1–440 β1: β1: GLFG: β1: I178D
HEAT repeats L174 F6 HP*
GLFG: GLFG peptide: GLFG: 4–7 T175 L5 HP*
Synthetic peptide 1DSGGLFGSK9 I178 F6 HP*
F217 F6 HP*
I218 F6 HP*

Kap95p-nup1p 2BPT [10] Kap95p: yeast 2.0 Kap95p: Kap95p: β1: Kap95p: nup1p: nup1p:
1–861 1–861 HEAT repeats L181 F1008 HP* F977D/F987D
nup1p: yeast I182 P1004 HP*
nup1p: nup1p: I182 F1008 HP*
963–1076 974–1012 V185 F1008 HP*
Y224 I1007 HP*
Y224 F1008 HP*
M226 F987 HP*
Q227 N986 Polar
Q227 F987 HP*
C230 I985 HP*
C230 F987 HP*
Y262 F987 HP*
M263 F977 HP*
Y268 P979 HP*
L270 P983 HP*
L270 I985 HP*
F317 F977 HP*
*

HP, Hydrophobic contact.

Table 6.

Structures of nucleoporins

Structure PDB-ID Ref. Organism Method Resolution (Å) Protein
constructs in crystals
Residues in model Domains/motifs
Nup35 1WWH [51] Mouse Crystal 2.70   149–267 169–249 Mppn domain
c-Nup98 autoprotease
   domain
1KO6 [52] Human Crystal 3.00   710–870 712–870 Auto-proteolytic/
pore-targeting
c-Nup116p 2AIV [53] Yeast NMR 967–1113 967–1113 Pore-targeting
n-Nup133 1XKS [54] Human Crystal 2.35    67–514 75–162, 170–201,
206–251, 270–177
7-Bladed β-propeller
n-Nup159p 1XIP [55] Yeast Crystal 2.5      2–387 2–347, 362–381 7-Bladed β-propeller

Fig. 1.

Fig. 1

Structures of Kapβ1/Impβ complexes. Kapβ1 proteins are shown as red ribbons. Substrates IBB (blue) and SREBP2 (orange) are drawn as cylinders and ribbons, PTHrp as a yellow ribbon. Ran is shown in green and nucleoporin peptides in blue (Nsp1p and the GLFG peptide drawn as stick figure and nup1p as cylinder/ribbon). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this paper.)

Fig. 6.

Fig. 6

Structures of nucleoporin domains.

2. Concluding remarks

We have summarized 53 structures of Kapβs, Kapαs, Ran and its regulators RanGAP, RanGEF, RanBP1 and NTF2, mRNA export factor TAP and nucleoporins. The information provided should be useful for both overexpression of recombinant proteins as well as for analysis and experimental manipulation of specific interactions of the proteins. We look forward to many more structure of nuclear transport proteins in the future, especially to complexes of different Kapβs with their substrates to understand NLS/NES specificity in the different pathways and also to structures of nucleoporin subcomplexes to understand the assembly of the nuclear pore complex and mechanism of translocation through the pore.

Fig. 2.

Fig. 2

Structures of Kapβ2/Transportin complexes, Cse1p complexes and a Crm1 fragment. In the two Kapβ2 complexes, both Kapβ2 (red) and Ran (green) are shown as cylinders/ribbons and substrate M9NLS is shown as a cyan ribbon. Cse1p and Crm1 are both shown as purple cylinders/ribbons, and Ran (green) and Kapα (yellow) in the Cse1p-Ran-Kapα complex as ribbons. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this paper.)

Fig. 3.

Fig. 3

Structures of mouse Kapα and yeast Kap60p complexes. Mouse Kapαs are all drawn as green ribbons and yeast Kap60p as blue ribbons. With the exception of Nup50p (red ribbon), all other ligands are shown as stick figures. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this paper.)

Fig. 4.

Fig. 4

Structures of complexes involving Ran, NTF2, RanGAP and RanGEF. All 11 structures are shown as ribbon diagrams, with Ran in green, RanGAP in magenta, RCC1 RanGEF in blue, NTF2 in red, and RanBD1 or RanBP1-domain in gold (RanGppNHp-RBD1; 1RRP) and grey (RanGppNHp-RanBD1-RanGAP; 1K5D). RanGAP ligands, UBC9 is in aquamarine, SUMO is light brown and a fragment of Nup358 is in light green.

Fig. 5.

Fig. 5

Structures of mRNA export factor TAP. TAP, Mex67p, p15 and MTR2p are all drawn as ribbons, and FG nucleoporin peptides are shown as stick figures. Domains of TAP and its yeast homolog Mex67p are in purple, p15 and its homolog Mtr2p are in red, and nucleoporin peptides in light green. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this paper.)

Table 2.

Crystal structures of Kapβ2, Csel complexes and a Crml fragment

Structure PDB-ID Ref. Organism Resolution (Å) Protein constructs
in crystals
Residues in
model
Domains/
motifs
Contact
residues
(mol. 1)
Contact
residues
(mol. 2)
Contact
residues
(mol. 3)
Contact
type
Disruptive
interface
mutants
Kapβ2- 1QBK [11] β2: human 3.0 β2: 1–890 β2: β2: β2: Ran:
   RanGppnhp Ran: human Ran: 1–216 3–152, 158–166, HEAT repeats I114 R110 HP*
170–890 S165 R110 Polar
E275 K141 Polar
Ran: E278 K141 Polar
8–197 I315 P172 HP*
E332 N154 Polar
R336 D148 Polar
P337 Y155 HP*
W373 N143 Polar
E682 K127 Polar

Kapβ2-M9NLS 2H4M [12] β2: human 3.1 β2: 1–336- β2: β2: β2: M9NLS: β2:
GGSGGSG- 6–36, HEAT repeats R805 N268 Polar W460A/
368–890 44–77, K765 Q269 Polar W730A
57–73, E809,I773 F273 HP*
M9NLS: from M9NLS: 257–305 80–319, M9NLS: W730 P275 HP*
hnRNP Al, human 368–890 extended T766 M276 HP*
T547 N280 Polar M9NLS:
M9NLS: F584,E588, F281 HP* G274A/
257–305 V643 HP* P288A/
A505,T506, R284 Polar Y289A
E509,D543, Polar
T547 Polar
L419,I457, P288 HP*
W460 HP*
A380,A381, Y289 HP*
D384,L419, HP*
R464 Polar

Csel 1Z3H [13] Yeast 3.1 1–959 Chain A: 2–529, HEAT repeats
544–870, 892–959
Chain B: 2–156,
162–525, 545–
875, 896–959

Csel-Kap60p- IWA5 [14] Csel: yeast 2.0 Csel: 1–960 Csel: Csel: Csel: Kap60p: Ran: Ran:
   Ran 1–193, 196–248, HEAT repeats R159 E42 Polar R76A/
255–371, 376– F164 V41 HP* D77A
413, 418–880, F164 L43 HP*
886–958 E166 R17 Polar
Kap60p: yeast Kap60p: Kap60p: 12–19, Kap60p: IBB, I167 L43 HP*
1–530 31–58, armadillo D220 R44 Polar K37D/
87–513 domain D227 K45 Polar K152A
D79 R44 Polar
Ran: canine Ran: 1–176 Ran: R321 D435 Polar
7–176 E387 K431 Polar R95D/
R579 E514 Polar K99A/
K62 R76 Polar K130A/
N63 D77 Polar K134A
N609 K152 Polar
D653 K37 Polar
E656 K152 Polar
H894 T93 Polar
H894 D128 Polar
E484 KI34 Polar
Q490 K95 Polar
N492 K99 Polar
Y498 K130 Polar
E506 K130 Polar
E511 K132 Polar

Crml 1W9C [15] Human 2.3 707–1034 707–1027 HEAT repeats

Table 3.

Crystal structures of Kapα complexes

Structure PDB-ID Ref. Organism Resolution (Å) Protein
constructs
in crystals
Residues
in model
Domains/
motifs
Contact
residues
(mol. 1)
Contact
residues
(mol. 2)
Contact
type
Disruptive
interface
mutants
Kapα 1IAL [16] Mouse 2.5 1–529 44–54, 70–496 Armadillo domain (ARM), ARM IBB
IBB T151 K49 Polar
T155 K49 Polar
D192 K49 Polar
D270 Q46 Polar

Kapα-SV40 1EJL [17] Kapα: mouse 2.8 α: 70–529 α: 72–497 α: ARM α: SV40:
   monopartite W142 K131 HP*
   NLS SV40: 126–132 sv40: 126–132 T155 K128 Polar
D192 K128 Polar
T328 K128 Polar
E354 K131 Polar
S360 K129 Polar
E396 K129 Polar
W399 K129 HP*

Kapα- 1Q1T [18] Kapα: mouse 2.5 α: 70–529 α: 70–496 α: ARM α: SV40:
   SV40 CN T155 K128 Polar
SV40: 110–132 SV40: D192 K128 Polar
123–133 E396 R130 Polar
127–134

Kapα-phospho- 1Q1S [18] Kapα: 2.3 α: 70–529 α: 64–497 α: ARM α: SV40:
   SV40CN Mouse T155 K128 Polar
SV40: 110–132 SV40: D192 K128 Polar
119–133 E396 R130 Polar
128–132

Kapα- PLSCR1 1Y2A [19] Kapα: mouse 2.2 α: 70–529 α: 70–529 α: ARM α: NLS:
   monopartite
   NLS E107 H262 Polar
PLSCR1: PLSCR1: W142 K261 HP*
257–266 257–266 W142 W263 HP*
T155 K258 Polar
W184 I299 HP*
W184 K261 HP*
D192 K258 Polar

Kapα- 1EJY [17] Kapα: mouse 2.9 α: 70–529 α: 72–497 α: ARM α: NLS:
   nucleoplasmin T155 K167 Polar
   bipartite NLS Nucleoplasmin: 155–170 Nucleoplasmin: 155–170 D192 K167 Polar
W231 K168 HP*
S360 R156 Polar
E396 R156 Polar

Kapα-N1N2 1PJN [20] Kapα: mouse 2.5 α: 70–529 α: 72–496 α: ARM α: N1N2: SV40:
   bipartite NLS W142 K554 HP* K128
N1N2: Xenopus, peptide N1N2: 533–556 N1N2: 535–555 N146 S553 Polar [2123]
T155 K551 Polar
Q181 K554 Polar
S276 K547 Polar
Y277 K547 HP*
T322 K539 Polar
T328 K537 Polar
S360 R538 Polar
E396 R538 Polar

Kapα-RB bipartite 1PJM [20] Kapα: mouse 2.5 α: 70–529 α: 71–497 α: ARM α: RB:
   NLS T155 K874 Polar
RB: human peptide RB: 859–879 RB: 859–878 Q181 R877 Polar
D192 K874 Polar
Y277 K871 Polar
T328 K861 Polar
E396 R862 Polar

Kapα-nup50 2C1M [24] Kapα: mouse 2.2 α: 70–529 α: 75–498 α: ARM α: Nup50: Nup50p: R38A/
K240 E9 Polar R45D
Nup50: mouse Nup50: 1–109 Nup50: 1–46 L307 W15 HP*
T328 K3 Polar
K348 D16 Polar
S360 R4 Polar
K392 E7 Polar
E396 R4 Polar
D471 R45 Polar
E474 R45 Polar
E493 K41 Polar

Kap60p 1BK5 [25] Kap60p: yeast 2.2 Kap60p: 88–530 Kap60p: 89–509 Kap60p: ARM

Kap60p-SV40 1BK6 [25] Kap60p: yeast 2.8 Kap60p: Kap60p: Kap60p: ARM Kap60p: SV40: Kap60p: N157A/
   monopartite 88–530 89–509 W153 K131 HP* D203K
   NLS T166 K128 Polar
SV40: 125–133 SV40: 127–132, Q192 K131 Polar
127–131 W195 K129 HP*
D203 K128 Polar
W237 K127 HP*
E272 K129 Polar
D276 K127 Polar
D331 K127 Polar
E402 K128 Polar

Kap60 p-c-myc 1EE4 [26] Kap60p: yeast 2.1 Kap60p: Kap60p: Kap60p: ARM Kap60p: NLS:
   monopartite 88–530 87–509 T166 K323 Polar
   NLS c-myc: human peptide W195 K326 HP*
c-myc: 319–329 c-myc: D203 K323 Polar
320–328 D276 R324 Polar
323–326 T334 K323 Polar
S366 R324 Polar
E402 R324 Polar

Kap60p- 1EE5 [26] Kap60p: yeast 2.4 Kap60p: Kap60p: Kap60p: Kap60p: NLS:
   Nucleopalsmin 88–530 90–506 ARM W195 K170 HP*
   bipartite NLS D203 K167 Polar
Nucleoplasmin: Nucleoplasmin: Nucleoplasmin: W237 K168 HP*
Xenopus peptide 154–172 153–171 W279 K162 HP*
T334 K155 Polar
S366 R156 Polar
E402 R156 Polar

Kap60p 1UN0 [27] Kap60p: yeast 2.6 Kap60p: Kap60p: Kap60p: Kap60p: Nup1p:
   -nup2p (2C1T) [24] 88–530 88–526 ARM S240 R47 Polar
nup1p: yeast N241 R47 Polar
Nup1p: 1–51 Nup1p: 36–51 Nup1p: D276 R47 Polar
N-terminal Kap60p W279 K45 HP*
Binding domain and NPC W363 K40 HP*
targeting domain E402 R38 Polar
*

HP, Hydrophobic contact.

Table 4.

Structures of Ran and NTF2 complexes

Structure PDB-ID Ref. Organism Method Resolution
(Å)
Protein constructs
in crystals
Residues
in model
Domains/
motifs
Contact
residues
(mol. 1)
Contact
residues
(mol. 2)
Contact
residues
(mol. 3)
Contact
residues
(mol. 4)
Contact
type
Disruptive
interface
mutants
RanGDP 1BYU [28] Canine Crystal 2.15 1–216 A: 2–216 G-domain
B: 5–208

RanGDP Q69L 3RAN [28] Canine Crystal 2.3 1–216 5–205 G-domain

RCC1 1A12 [29] Human Crystal 1.7 1–421 21–421 7-Bladed propeller

Ran-RCC1 1I2M [30] Ran: human Crystal 1.8 Ran: Ran: Ran: Ran: RCC1: Ran: G19V [31]
1–216 8–31, 37–177 G-domain K71 H304 Polar
RCC1: human RCC1: RCC1: RCC1: R76 E334 Polar RCC1: D128A,
D182A, H304A
[32,33]
1–421 24–232, 7-Bladed propeller S94 R147 Polar
239–417 R95 D95 Polar
K99 D128 Polar
N100 Q303 Polar
R106 D384 Polar
D107 R320 Polar
R110 Y323 Polar
K134 D95 Polar
R140 D44 Polar
RanGAP (rna1p) 1YRG [34] S. pombe Crystal 2.66 1–387 2–344 LRR

RanBD2 of RanBP2 1XKE [35] human NMR 2028–2154 2028–2154 PH
(RanBP2) (RanBP2)

Ran-GppNHp-RanBD1 1RRP [36] Ran: human Crystal 2.9 Ran: 1–216 Ran: (A) 8–211 RanBD1: PH Ran: RanBD1:
F11 V21 HP*
RanBD1 of RanBD1 of (C): 8–187 Ran: G-domain F11 V22 HP*
Ran BP2: human Ran BP2: R29 E59 Polar
1155–1321 (1–167) RanBD1 of K38 E56 Polar
Ran BP2: 17–150
E158 Q84 Polar
W163 F18 HP*
K167 F18 HP*
L168 V21 HP*
I169 V22 HP*
E186 K75 Polar
D211 K46 Polar
Ran-GppNHp-RanBP1- 1K5D [37] Ran: human Crystal 2.7 Ran: 1–216 Ran: 8–213 RanGAP: LRR Ran: RanGAP: RanBP1:
   RanGAP D18 R168 Polar
RanBP1: RanBP1: RanBP1: L43 I79 HP*
human
1–201 22–167 E46 K76 Polar
RanGAP: K71 D103 Polar
S.pombe RanGAP: RanGAP: D128 R200 Polar
1–386 2–345 K130 D225 Polar
K130 L255 HP*
V9 L33 HP*
R29 E69 Polar
N55 E35 Polar
W163 F27 HP*
K167 D24 Polar
K167 Q26 Polar
L168 I30 HP*
I169 V31 HP*
I169 L33 HP*
V177 I38 HP*
L201 K111 HP*
L201 V121 HP*
D213 K54 Polar
D213 R141 Polar

Ran-GDP-RanBP1-RanGAP 1K5G [37] Ran: human Crystal 3.1 Ran: 1–216 Ran: 8–213 RanGAP: LRR Ran: RanGAP: RanBP1:
D18 R168 Polar
RanBP1: human RanBP1: 1–201 RanBP1: 22–167 L43 I79 HP*
RanGAP: Yeast (S. pombe) D128 R200 Polar
K130 D225 Polar
RanGAP: 1–386 RanGAP: 2–345 K130 L255 HP*
V9 L33 HP*
R29 E69 Polar
N55 E35 Polar
R56 E35 Polar
W163 F27 HP*
K167 D24 Polar
K167 Q26 Polar
L168 I30 HP*
I169 V31 HP*
I169 L33 HP*
V177 I38 HP*
L201 K111 HP*
L201 V121 HP*
D213 K54 Polar
D213 R141 Polar

Ubc9-RanGAP1 1KPS [38] Ubc9: human Crystal 2.5 Ubc9: 1–159 Ubc9: 3–158 Ubc9: RanGAP1:
K74 E528 Polar
RanGAP1: mouse Y87 E528 HP*
RanGAP1: 420–589 RanGAP1: 434–589 C93 K526 Polar
D127 K526 Polar
E132 N512 Polar

SUMO-1- 1Z5S [39] Human Crystal 3.0 SUMO-1: 18–97 SUMO-1: 20–97 RanBP2: SUMO-1: RanGAP1: Ubc9: Nup358:
   RanGAP1- E3 ligase domain R63 R104 Polar
   Ubc9- RanGAP1: 419–587 RanGAP1: 432–587 Q92 E122 Polar
   Nup358/ K39 D2631 Polar
   RanBP2 Ubc9: 1–158 Ubc9: R54 E2637 Polar
2–157 E526 K74 Polar
R13 E2675 Polar
Nup358: 2631–2695 Nup358: 2631–2693 R13 D2673 Polar
K30 D2676 Polar

NTF2 1OUN [40] Rat Crystal 1.6 1–127 (A): 2–126
(B): 4–124

NTF2-RanGDP 1A2K [41] NTF2: rat Crystal 2.5 NTF2: 1–127 NTF2: Ran: G-protein domain NTF2: Ran: NTF2: E42K,
D92/94N [42]
4–127 W41 F72 HP*
Ran: canine E42 R76 Polar Ran:
Ran: 1–216 Ran: F61 F72 HP* Q69L [28]
(C) 8–206 I64 F72 HP*
(D) 8–204 L89 F72 HP*
D92 K71 Polar
D94 K71 Polar
F119 F72 HP*

NTF2 N77Y-FxFG 1GYB [43] Yeast Crystal 1.9 NTF2: 1–125 NTF2: NTF2 FxFG NTF2:
(A): (A):
3–124 Q43/45D
(A and B) F5 F43 HP*
5–124 P73 F43 HP* W7A [44]
(C and D) P73 F45 HP*
NTF2(B): FxFg(B):
FxFG from Nsp1p: FxFG: E34 F45 HP*
40–48 42–46 M36 F43 HP*
M36 F45 HP*
Q43 F43 HP*
F115 F45 HP*
*

HP, Hydrophobic contact.

Table 5.

Structures of mRNA export complexes

Structure PDB-ID Ref. Organism Method Resolution (Å) Protein constructs
in crystals
Residues in model Domains/motifs Contact residues
(mol. 1)
Contact
residues (mol.
2)
Contact
type
Disruptive
interface
mutants
TAP-RBD (LRR) 1FO1 [45] Human Crystal 2.9 102–372 123–191, 203–362 Partially disordered
RNP domain and LRR
domains

TAP-RBD (RNP) 1FT8 [45] Human Crystal 3.15 102–372 119–198, 205–362 RNP domains and
LRR domains

TAP-novel RBD 1KOH [46] Human Crystal 3.8 96–372 A: 105–362 RNP and LRR
   (native) B: 201–367 domains
C: 105–362
D: 201–372

Tap/NXF1-C-
   term
1GO5 [47] Human NMR 551–619 551–619 UBA-like domain

TAP-UBA-FXFG 1OAI [48] Human Crystal 1 TAP: TAP: TAP: UBA-like TAP: FG: TAP: C588
domain
561–619 561–619 M580 F15 HP*
FXFG: FxFG: 10–18 W584 F15 HP*
DSGFSFGSK K587 F15 HP*
C588 F15 HP*
A602 F15 HP*
L606 F15 HP*
E611 F13 HP*
P613 F13 HP*

TAP-p15 1JKG [49] TAP: human Crystal 1.9 TAP: TAP: TAP: UBA-like TAP: p15: TAP:
domain
371–619 370–423, 431–555 NTF2-like domain R440 D76 Polar D482R
K446 E18 Polar I518R
p15: human p15: 2–140 p15: 1–240 p15: D482 R134 Polar
NTF2-like domain 1518 V80 HP*
F535 C96 HP*

TAP-p15-FG 1JN5 [49] TAP: human Crystal 2.8 TAP: TAP: TAP: UBA-like TAP: FG: TAP:
domain,
371–619 371–422, 430–555 NTF2-like domain L383 F1810 HP* L383R, L386R,
L386 F1810 HP* W594A
p15: 2–140 p15: 2–140 p15: P521 F1810 HP*
p15: human NTF2-like domain L527 F1810 HP*
FG:
FG: 1808–1812
1805–1816
Of Nup214

Mex67-Mtr2 1OF5 [50] Mex67: Crystal 2.8 Mex67: Mex67: NTF2-like domain Mex67: Mtr2:
Saccharomyces 264–407, 436–488 268–315, 354–107, D446 S148 Polar
cerevisiae 436–488 T466 N99 Polar
Mtr2: S. cerevisiae Mtr2: 1–184 Mtr2: E385 N170 Polar
14–106,
141–177
*

HP, Hydrophobic contact.

References

  • 1.Lee SJ, Matsuura Y, Liu SM, Stewart M. Nature. 2005;435:693–696. doi: 10.1038/nature03578. [DOI] [PubMed] [Google Scholar]
  • 2.Vetter IR, Arndt A, Kutay U, Gorlich D, Wittinghofer A. Cell. 1999;97:635–646. doi: 10.1016/s0092-8674(00)80774-6. [DOI] [PubMed] [Google Scholar]
  • 3.Lee SJ, Imamoto N, Sakai H, Nakagawa A, Kose S, Koike M, Yamamoto M, Kumasaka T, Yoneda Y, Tsukihara T. J. Mol. Biol. 2000;302:251–264. doi: 10.1006/jmbi.2000.4055. [DOI] [PubMed] [Google Scholar]
  • 4.Cingolani G, Petosa C, Weis K, Muller CW. Nature. 1999;399:221–229. doi: 10.1038/20367. [DOI] [PubMed] [Google Scholar]
  • 5.Koerner C, Guan T, Gerace L, Cingolani G. J. Biol. Chem. 2003;278:16216–16221. doi: 10.1074/jbc.M301137200. [DOI] [PubMed] [Google Scholar]
  • 6.Cingolani G, Bednenko J, Gillespie MT, Gerace L. Mol. Cell. 2002;10:1345–1353. doi: 10.1016/s1097-2765(02)00727-x. [DOI] [PubMed] [Google Scholar]
  • 7.Lee SJ, Sekimoto T, Yamashita E, Nagoshi E, Nakagawa A, Imamoto N, Yoshimura M, Sakai H, Chong KT, Tsukihara T, Yoneda Y. Science. 2003;302:1571–1575. doi: 10.1126/science.1088372. [DOI] [PubMed] [Google Scholar]
  • 8.Bayliss R, Littlewood T, Stewart M. Cell. 2000;102:99–108. doi: 10.1016/s0092-8674(00)00014-3. [DOI] [PubMed] [Google Scholar]
  • 9.Bayliss R, Littlewood T, Strawn LA, Wente SR, Stewart M. J. Biol. Chem. 2002;277:50597–50606. doi: 10.1074/jbc.M209037200. [DOI] [PubMed] [Google Scholar]
  • 10.Liu SM, Stewart M. J. Mol. Biol. 2005;349:515–525. doi: 10.1016/j.jmb.2005.04.003. [DOI] [PubMed] [Google Scholar]
  • 11.Chook YM, Blobel G. Nature. 1999;399:230–237. doi: 10.1038/20375. [DOI] [PubMed] [Google Scholar]
  • 12.Lee BJ, Cansizoglu AE, Süel KE, Louis TH, Zhang Z, Chook YM. Cell. 2006;126:543–558. doi: 10.1016/j.cell.2006.05.049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Cook A, Fernandez E, Lindner D, Ebert J, Schlenstedt G, Conti E. Mol. Cell. 2005;18:355–367. doi: 10.1016/j.molcel.2005.03.021. [DOI] [PubMed] [Google Scholar]
  • 14.Matsuura Y, Stewart M. Nature. 2004;432:872–877. doi: 10.1038/nature03144. [DOI] [PubMed] [Google Scholar]
  • 15.Petosa C, Schoehn G, Askjaer P, Bauer U, Moulin M, Steuerwald U, Soler-Lopez M, Baudin F, Mattaj IW, Muller CW. Mol. Cell. 2004;16:761–775. doi: 10.1016/j.molcel.2004.11.018. [DOI] [PubMed] [Google Scholar]
  • 16.Kobe B. Nat. Struct. Biol. 1999;6:388–397. doi: 10.1038/7625. [DOI] [PubMed] [Google Scholar]
  • 17.Fontes MR, Teh T, Kobe B. J. Mol. Biol. 2000;297:1183–1194. doi: 10.1006/jmbi.2000.3642. [DOI] [PubMed] [Google Scholar]
  • 18.Fontes MR, Teh T, Toth G, John A, Pavo I, Jans DA, Kobe B. Biochem. J. 2003;375:339–349. doi: 10.1042/BJ20030510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Chen MH, Ben-Efraim I, Mitrousis G, Walker-Kopp N, Sims PJ, Cingolani G. J. Biol. Chem. 2005;280:10599–10606. doi: 10.1074/jbc.M413194200. [DOI] [PubMed] [Google Scholar]
  • 20.Fontes MR, Teh T, Jans D, Brinkworth RI, Kobe B. J. Biol. Chem. 2003;278:27981–27987. doi: 10.1074/jbc.M303275200. [DOI] [PubMed] [Google Scholar]
  • 21.Lanford RE, Butel JS. Cell. 1984;37:801–813. doi: 10.1016/0092-8674(84)90415-x. [DOI] [PubMed] [Google Scholar]
  • 22.Kalderon D, Richardson WD, Markham AF, Smith AE. Nature. 1984;311:33–38. doi: 10.1038/311033a0. [DOI] [PubMed] [Google Scholar]
  • 23.Colledge WH, Richardson WD, Edge MD, mith AE. Mol. Cell. Biol. 1986;6:4136–4139. doi: 10.1128/mcb.6.11.4136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Matsuura Y, Stewart M. EMBO J. 2005;24:3681–3689. doi: 10.1038/sj.emboj.7600843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Conti E, Uy M, Leighton L, Blobel G, Kuriyan J. Cell. 1998;94:193–204. doi: 10.1016/s0092-8674(00)81419-1. [DOI] [PubMed] [Google Scholar]
  • 26.Conti E, Kuriyan J. Struct. Fold Des. 2000;8:329–338. doi: 10.1016/s0969-2126(00)00107-6. [DOI] [PubMed] [Google Scholar]
  • 27.Matsuura Y, Lange A, Harreman MT, Corbett AH, Stewart M. EMBO J. 2003;22:5358–5369. doi: 10.1093/emboj/cdg538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Stewart M, Kent HM, McCoy AJ. J. Mol. Biol. 1998;284:1517–1527. doi: 10.1006/jmbi.1998.2204. [DOI] [PubMed] [Google Scholar]
  • 29.Renault L, Nassar N, Vetter I, Becker J, Klebe C, Roth M, Wittinghofer A. Nature. 1998;392:97–101. doi: 10.1038/32204. [DOI] [PubMed] [Google Scholar]
  • 30.Renault L, Kuhlmann J, Henkel A, Wittinghofer A. Cell. 2001;105:245–255. doi: 10.1016/s0092-8674(01)00315-4. [DOI] [PubMed] [Google Scholar]
  • 31.Lounsbury KM, Richards SA, Carey KL, Macara IG. J. Biol. Chem. 1996;271:32834–32841. doi: 10.1074/jbc.271.51.32834. [DOI] [PubMed] [Google Scholar]
  • 32.Azuma Y, Seino H, Seki T, Uzawa S, Klebe C, Ohba T, Wittinghofer A, Hayashi N, Nishimoto T. J. Biochem. (Tokyo) 1996;120:82–91. doi: 10.1093/oxfordjournals.jbchem.a021397. [DOI] [PubMed] [Google Scholar]
  • 33.Azuma Y, Renault L, Garcia-Ranea JA, Valencia A, Nishimoto T, Wittinghofer A. J. Mol. Biol. 1999;289:1119–1130. doi: 10.1006/jmbi.1999.2820. [DOI] [PubMed] [Google Scholar]
  • 34.Hillig RC, Renault L, Vetter IR, Drell Tt, Wittinghofer A, Becker J. Mol. Cell. 1999;3:781–791. doi: 10.1016/s1097-2765(01)80010-1. [DOI] [PubMed] [Google Scholar]
  • 35.Geyer JP, Doker R, Kremer W, Zhao X, Kuhlmann J, Kalbitzer HR. J. Mol. Biol. 2005;348:711–725. doi: 10.1016/j.jmb.2005.02.033. [DOI] [PubMed] [Google Scholar]
  • 36.Vetter IR, Nowak C, Nishimoto T, Kuhlmann J, Wittinghofer A. Nature. 1999;398:39–46. doi: 10.1038/17969. [DOI] [PubMed] [Google Scholar]
  • 37.Seewald MJ, Korner C, Wittinghofer A, Vetter IR. Nature. 2002;415:662–666. doi: 10.1038/415662a. [DOI] [PubMed] [Google Scholar]
  • 38.Bernier-Villamor V, Sampson DA, Matunis MJ, Lima CD. Cell. 2002;108:345–356. doi: 10.1016/s0092-8674(02)00630-x. [DOI] [PubMed] [Google Scholar]
  • 39.Reverter D, Lima CD. Nature. 2005;435:687–692. doi: 10.1038/nature03588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Bullock TL, Clarkson WD, Kent HM, Stewart M. J. Mol. Biol. 1996;260:422–431. doi: 10.1006/jmbi.1996.0411. [DOI] [PubMed] [Google Scholar]
  • 41.Stewart M, Kent HM, McCoy AJ. J. Mol. Biol. 1998;277:635–646. doi: 10.1006/jmbi.1997.1602. [DOI] [PubMed] [Google Scholar]
  • 42.Clarkson WD, Corbett AH, Paschal BM, Kent HM, McCoy AJ, Gerace L, Silver PA, Stewart M. J. Mol. Biol. 1997;272:716–730. doi: 10.1006/jmbi.1997.1255. [DOI] [PubMed] [Google Scholar]
  • 43.Bayliss R, Leung SW, Baker RP, Quimby BB, Corbett AH, Stewart M. EMBO J. 2002;21:2843–2853. doi: 10.1093/emboj/cdf305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Bayliss R, Ribbeck K, Akin D, Kent HM, Feldherr CM, Gorlich D, Stewart M. J. Mol. Biol. 1999;293:579–593. doi: 10.1006/jmbi.1999.3166. [DOI] [PubMed] [Google Scholar]
  • 45.Liker E, Fernandez E, Izaurralde E, Conti E. EMBO J. 2000;19:5587–5598. doi: 10.1093/emboj/19.21.5587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Ho DN, Coburn GA, Kang Y, Cullen BR, Georgiadis MM. Proc. Natl. Acad. Sci. USA. 2002;99:1888–1893. doi: 10.1073/pnas.042698599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Grant RP, Hurt E, Neuhaus D, Stewart M. Nat. Struct. Biol. 2002;9:247–251. doi: 10.1038/nsb773. [DOI] [PubMed] [Google Scholar]
  • 48.Grant RP, Neuhaus D, Stewart M. J. Mol. Biol. 2003;326:849–858. doi: 10.1016/s0022-2836(02)01474-2. [DOI] [PubMed] [Google Scholar]
  • 49.Fribourg S, Braun IC, Izaurralde E, Conti E. Mol. Cell. 2001;8:645–656. doi: 10.1016/s1097-2765(01)00348-3. [DOI] [PubMed] [Google Scholar]
  • 50.Fribourg S, Conti E. EMBO Rep. 4:699–703. doi: 10.1038/sj.embor.embor883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Handa N, Murayama K, Kukimoto M, Hamana H, Uchikubo C, Takemoto T, Terada T, Shirouzu M, Yokoyama S. to be published. [Google Scholar]
  • 52.Hodel AE, Hodel MR, Griffis ER, Hennig KA, Ratner GA, Xu S, Powers MA. Mol. Cell. 2002;10:347–358. doi: 10.1016/s1097-2765(02)00589-0. [DOI] [PubMed] [Google Scholar]
  • 53.Robinson MA, Park S, Sun ZY, Silver PA, Wagner G, Hogle JM. J. Biol. Chem. 2005;280:35723–35732. doi: 10.1074/jbc.M505068200. [DOI] [PubMed] [Google Scholar]
  • 54.Berke IC, Boehmer T, Blobel G, Schwartz TU. J. Cell Biol. 2004;167:591–597. doi: 10.1083/jcb.200408109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Weirich CS, Erzberger JP, Berger JM, Weis K. Mol. Cell. 2004;16:749–760. doi: 10.1016/j.molcel.2004.10.032. [DOI] [PubMed] [Google Scholar]

RESOURCES