Abstract
Photochemical activity was examined in membrane fragments and a purified membrane preparation from Chloroflexus. Flash-induced absorption difference spectroscopy strongly suggests a primary donor (P865) that is more similar to the P870 bacteriochlorophyll a dimer found in the purple photosynthetic bacteria than it is to P840 found in the anaerobic green bacteria. Redox measurements on P865 and an early acceptor also indicate a photochemical system characteristic of the purple bacteria. The membrane preparation contains a tightly bound type c cytochrome, c554, that is closely coupled to the reaction center as indicated by its ability to rereduce photooxidized P865. Chloroflexus thus appears to be distinct photochemically from other families of photosynthetic bacteria and may occupy an important role in photosynthetic evolution.
Keywords: photosynthesis, bacteriochlorophyll, reaction center, redox potentiometry, evolution
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Dutton P. L., Kaufmann K. J., Chance B., Rentzepis P. M. Picosecond kinetics of the 1250 nm band of the Rps. sphaeroides reaction center: the nature of the primary photochemical intermediary state. FEBS Lett. 1975 Dec 15;60(2):275–280. doi: 10.1016/0014-5793(75)80730-7. [DOI] [PubMed] [Google Scholar]
- Dutton P. L. Redox potentiometry: determination of midpoint potentials of oxidation-reduction components of biological electron-transfer systems. Methods Enzymol. 1978;54:411–435. doi: 10.1016/s0076-6879(78)54026-3. [DOI] [PubMed] [Google Scholar]
- Feick R. G., Fitzpatrick M., Fuller R. C. Isolation and characterization of cytoplasmic membranes and chlorosomes from the green bacterium Chloroflexus aurantiacus. J Bacteriol. 1982 May;150(2):905–915. doi: 10.1128/jb.150.2.905-915.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knaff D. B., Olson J. M., Prince R. C. The light-reaction of the green photosynthetic bacterium Chlorobium limicola F. thiosulfatophilum at cryogenic temperatures. FEBS Lett. 1979 Feb 15;98(2):285–289. doi: 10.1016/0014-5793(79)80201-x. [DOI] [PubMed] [Google Scholar]
- Olson J. M. Chlorophyll organization in green photosynthetic bacteria. Biochim Biophys Acta. 1980 Dec 22;594(1):33–51. doi: 10.1016/0304-4173(80)90012-9. [DOI] [PubMed] [Google Scholar]
- Olson J. M., Prince R. C., Brune D. C. Reaction-center complexes from green bacteria. Brookhaven Symp Biol. 1976 Jun 7;(28):238–246. [PubMed] [Google Scholar]
- Parson W. W., Cogdell R. J. The primary photochemical reaction to bacterial photosynthesis. Biochim Biophys Acta. 1975 Mar 31;416(1):105–149. doi: 10.1016/0304-4173(75)90014-2. [DOI] [PubMed] [Google Scholar]
- Pierson B. K., Castenholz R. W. A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. Arch Microbiol. 1974;100(1):5–24. doi: 10.1007/BF00446302. [DOI] [PubMed] [Google Scholar]
- Reed D. W. Isolation and composition of a photosynthetic reaction center complex from Rhodopseudomonas spheroides. J Biol Chem. 1969 Sep 25;244(18):4936–4941. [PubMed] [Google Scholar]
- Sprague S. G., Staehelin L. A., Fuller R. C. Semiaerobic induction of bacteriochlorophyll synthesis in the green bacterium Chloroflexus aurantiacus. J Bacteriol. 1981 Sep;147(3):1032–1039. doi: 10.1128/jb.147.3.1032-1039.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Swarthoff T., Amesz J. Photochemically active pigment-protein complexes from the green photosynthetic bacterium Prosthecochloris aestuarii. Biochim Biophys Acta. 1979 Nov 8;548(2):427–432. doi: 10.1016/0005-2728(79)90146-4. [DOI] [PubMed] [Google Scholar]