Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Nov;79(21):6556–6560. doi: 10.1073/pnas.79.21.6556

Effects of taxol and Colcemid on myofibrillogenesis.

Y Toyama, S Forry-Schaudies, B Hoffman, H Holtzer
PMCID: PMC347166  PMID: 6128733

Abstract

To determine the relationship between thin filaments, Z-bands, microtubules, intermediate filaments (IFs), T-tubules, and sarcoplasmic reticulum (SR) during myofibrillogenesis, myotubes were selectively depleted of their myofibrils with 12-tetradecanoylphorbol 13-acetate (TPA) and then were allowed to regenerate in (i) normal medium, (ii) taxol, and (iii) Colcemid. Myofibrils assembled in normal medium formed typical A-, I-, Z-, M-, and H-bands and associated IFs, T-tubules, and SR. Myofibrils assembled in taxol formed "A-bands" of aligned thick filaments interdigitating with long microtubules and "I-bands" consisting only of microtubules. These unprecedented sarcomeres lacked thin filaments, Z-bands, and associated IFs and SR. "Solitary A-bands," consisting exclusively of laterally aligned bipolar thick filaments 1.6 microM in length without either thin filaments or microtubules, were observed. Myofibrils assembled in Colcemid formed all myofibrillar components in the absence of microtubules but these did not achieve rigorous lateral alignment. Colcemid and taxol induced the formation of patchy Z-bands that invariably served as insertion sites for thin filaments, irrespective of the presence or absence of adjacent thick filaments. Z-bands may function as actin-organizing centers for each sarcomere.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antin P. B., Forry-Schaudies S., Friedman T. M., Tapscott S. J., Holtzer H. Taxol induces postmitotic myoblasts to assemble interdigitating microtubule-myosin arrays that exclude actin filaments. J Cell Biol. 1981 Aug;90(2):300–308. doi: 10.1083/jcb.90.2.300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chi J. C., Fellini S. A., Holtzer H. Differences among myosins synthesized in non-myogenic cells, presumptive myoblasts, and myoblasts. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4999–5003. doi: 10.1073/pnas.72.12.4999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Croop J., Dubyak G., Toyama Y., Dlugosz A., Scarpa A., Holtzer H. Effects of 12-O-tetradecanoyl-phorbol-13-acetate on Myofibril integrity and Ca2+ content in developing myotubes. Dev Biol. 1982 Feb;89(2):460–474. doi: 10.1016/0012-1606(82)90334-7. [DOI] [PubMed] [Google Scholar]
  4. Croop J., Toyama Y., Dlugosz A. A., Holtzer H. Selective effects of phorbol 12-myristate 13-acetate on myofibrils and 10-nm filaments. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5273–5277. doi: 10.1073/pnas.77.9.5273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fellini S. A., Holtzer H. The localization of skeletal light meromyosin in cells of myogenic cultures. Differentiation. 1976 Aug 3;6(2):71–74. doi: 10.1111/j.1432-0436.1976.tb01471.x. [DOI] [PubMed] [Google Scholar]
  6. HOLTZER H., MARSHALL J. M., Jr, FINCK H. An analysis of myogenesis by the use of fluorescent antimyosin. J Biophys Biochem Cytol. 1957 Sep 25;3(5):705–724. doi: 10.1083/jcb.3.5.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hayashi M., Ohnishi K., Hayashi K. Dense precipitate of brain tubulin with skeletal muscle myosin. J Biochem. 1980 May;87(5):1347–1355. doi: 10.1093/oxfordjournals.jbchem.a132874. [DOI] [PubMed] [Google Scholar]
  8. Holtzer H., Bennett G. S., Tapscott S. J., Croop J. M., Toyama Y. Intermediate-size filaments: changes in synthesis and distribution in cells of the myogenic and neurogenic lineages. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 1):317–329. doi: 10.1101/sqb.1982.046.01.033. [DOI] [PubMed] [Google Scholar]
  9. Huxley H. E., Brown W. The low-angle x-ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor. J Mol Biol. 1967 Dec 14;30(2):383–434. doi: 10.1016/s0022-2836(67)80046-9. [DOI] [PubMed] [Google Scholar]
  10. Ishikawa H., Bischoff R., Holtzer H. Formation of arrowhead complexes with heavy meromyosin in a variety of cell types. J Cell Biol. 1969 Nov;43(2):312–328. [PMC free article] [PubMed] [Google Scholar]
  11. Ishikawa H., Bischoff R., Holtzer H. Mitosis and intermediate-sized filaments in developing skeletal muscle. J Cell Biol. 1968 Sep;38(3):538–555. doi: 10.1083/jcb.38.3.538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Josephs R., Harrington W. F. On the stability of myosin filaments. Biochemistry. 1968 Aug;7(8):2834–2847. doi: 10.1021/bi00848a020. [DOI] [PubMed] [Google Scholar]
  13. Kaminer B., Bell A. L. Myosin filamentogenesis: effects of pH and ionic concentration. J Mol Biol. 1966 Sep;20(2):391–401. doi: 10.1016/0022-2836(66)90070-2. [DOI] [PubMed] [Google Scholar]
  14. Mackenzie J. M., Jr, Epstein H. F. Paramyosin is necessary for determination of nematode thick filament length in vivo. Cell. 1980 Dec;22(3):747–755. doi: 10.1016/0092-8674(80)90551-6. [DOI] [PubMed] [Google Scholar]
  15. Moos C., Offer G., Starr R., Bennett P. Interaction of C-protein with myosin, myosin rod and light meromyosin. J Mol Biol. 1975 Sep 5;97(1):1–9. doi: 10.1016/s0022-2836(75)80017-9. [DOI] [PubMed] [Google Scholar]
  16. Morimoto K., Harrington W. F. Isolation and composition of thick filaments from rabbit skeletal muscle. J Mol Biol. 1973 Jun 15;77(1):165–175. doi: 10.1016/0022-2836(73)90370-7. [DOI] [PubMed] [Google Scholar]
  17. Moss P. S., Strohman R. C. Myosin synthesis by fusion-arrested chick embryo myoblasts in cell culture. Dev Biol. 1976 Feb;48(2):431–437. doi: 10.1016/0012-1606(76)90104-4. [DOI] [PubMed] [Google Scholar]
  18. Okazaki K., Holtzer H. An analysis of myogenesis in vitro using fluorescein-labeled antimyosin. J Histochem Cytochem. 1965 Nov-Dec;13(8):726–739. doi: 10.1177/13.8.726. [DOI] [PubMed] [Google Scholar]
  19. Peng H. B., Wolosewick J. J., Cheng P. C. The development of myofibrils in cultured muscle cells: a whole-mount and thin-section electron microscopic study. Dev Biol. 1981 Nov;88(1):121–136. doi: 10.1016/0012-1606(81)90224-4. [DOI] [PubMed] [Google Scholar]
  20. Schiff P. B., Fant J., Horwitz S. B. Promotion of microtubule assembly in vitro by taxol. Nature. 1979 Feb 22;277(5698):665–667. doi: 10.1038/277665a0. [DOI] [PubMed] [Google Scholar]
  21. Schiff P. B., Horwitz S. B. Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1561–1565. doi: 10.1073/pnas.77.3.1561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Shimada Y., Obinata T. Polarity of actin filaments at the initial stage of myofibril assembly in myogenic cells in vitro. J Cell Biol. 1977 Mar;72(3):777–785. doi: 10.1083/jcb.72.3.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Shimo-Oka T., Hayashi M., Watanabe Y. Tubulin-myosin interaction. Some properties of binding between tubulin and myosin. Biochemistry. 1980 Oct 14;19(21):4921–4926. doi: 10.1021/bi00562a034. [DOI] [PubMed] [Google Scholar]
  24. Toyama Y., Obinata T., Holtzer H. Crystalloids of actin-like filaments in the Sertoli cell of the swine testis. Anat Rec. 1979 Sep;195(1):47–62. doi: 10.1002/ar.1091950105. [DOI] [PubMed] [Google Scholar]
  25. Toyama Y., West C. M., Holtzer H. Differential response of myofibrils and 10-nm filaments to a cocarcinogen. Am J Anat. 1979 Sep;156(1):131–137. doi: 10.1002/aja.1001560114. [DOI] [PubMed] [Google Scholar]
  26. Wachsberger P. R., Pepe F. A. Interaction between vertebrate skeletal and uterine muscle myosins and light meromyosins. J Cell Biol. 1980 Apr;85(1):33–41. doi: 10.1083/jcb.85.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Woodrum D. T., Rich S. A., Pollard T. D. Evidence for biased bidirectional polymerization of actin filaments using heavy meromyosin prepared by an improved method. J Cell Biol. 1975 Oct;67(1):231–237. doi: 10.1083/jcb.67.1.231. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES