Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Nov;79(21):6617–6621. doi: 10.1073/pnas.79.21.6617

T-cell cloning to detect the mutant 6-thioguanine-resistant lymphocytes present in human peripheral blood.

R J Albertini, K L Castle, W R Borcherding
PMCID: PMC347179  PMID: 6983072

Abstract

Rare thioguanine-resistant T lymphocytes, present in vivo in human peripheral blood, were isolated and grown in vitro as thioguanine-resistant cultured T cells. The conditions for their selection in vitro were such that thioguanine resistance had to have arisen in vivo. The mutant cells bore T-cell surface markers, maintained their thioguanine resistance in vitro in the presence or absence of selection, and were deficient in hypoxanthine-guanine phosphoribosyltransferase activity.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albertini R. J. Drug-resistant lymphocytes in man as indicators of somatic cell mutation. Teratog Carcinog Mutagen. 1980;1(1):25–48. doi: 10.1002/tcm.1770010105. [DOI] [PubMed] [Google Scholar]
  2. Chu E. H., Powell S. S. Selective systems in somatic cell genetics. Adv Hum Genet. 1976;7:189–258. doi: 10.1007/978-1-4757-0659-8_5. [DOI] [PubMed] [Google Scholar]
  3. DeMars R. Genetic studies of HG- PRT deficiency and the Lesch-Nyhan syndrome with cultured human cells. Fed Proc. 1971 May-Jun;30(3):944–955. [PubMed] [Google Scholar]
  4. DeMars R., Held K. R. The spontaneous azaguanine-resistant mutants of diploid human fibroblasts. Humangenetik. 1972;16(1):87–110. doi: 10.1007/BF00393992. [DOI] [PubMed] [Google Scholar]
  5. DeMars R. Resistance of cultured human fibroblasts and other cells to purine and pyrimidine analogues in relation to mutagenesis detection. Mutat Res. 1974 Sep;24(3):335–364. doi: 10.1016/0027-5107(74)90180-8. [DOI] [PubMed] [Google Scholar]
  6. Hartzman R. J., Bach M. L., Bach F. H., Thurman G. B., Sell K. W. Precipitation of radioactively labeled samples: a semi-automatic multiple-sample processor. Cell Immunol. 1972 Jun;4(2):182–186. doi: 10.1016/0008-8749(72)90018-4. [DOI] [PubMed] [Google Scholar]
  7. Inouye H., Hank J. A., Alter B. J., Bach F. H. TCGF production for cloning and growth of functional human T lymphocytes. Scand J Immunol. 1980;12(2):149–154. doi: 10.1111/j.1365-3083.1980.tb00051.x. [DOI] [PubMed] [Google Scholar]
  8. LESCH M., NYHAN W. L. A FAMILIAL DISORDER OF URIC ACID METABOLISM AND CENTRAL NERVOUS SYSTEM FUNCTION. Am J Med. 1964 Apr;36:561–570. doi: 10.1016/0002-9343(64)90104-4. [DOI] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Maizel A. L., Mehta S. R., Hauft S., Franzini D., Lachman L. B., Ford R. J. Human T lymphocyte/monocyte interaction in response to lectin: kinetics of entry into the S-phase. J Immunol. 1981 Sep;127(3):1058–1064. [PubMed] [Google Scholar]
  11. Nusbacher J., Scher M. L., MacPherson J. L. Plateletpheresis using the haemonetics model 30 cell separator. Vox Sang. 1977 Jul;33(1):9–15. doi: 10.1111/j.1423-0410.1977.tb02230.x. [DOI] [PubMed] [Google Scholar]
  12. OYAMA V. I., EAGLE H. Measurement of cell growth in tissue culture with a phenol reagent (folin-ciocalteau). Proc Soc Exp Biol Med. 1956 Feb;91(2):305–307. doi: 10.3181/00379727-91-22245. [DOI] [PubMed] [Google Scholar]
  13. Paul W. E., Sredni B., Schwartz R. H. Long-term growth and cloning of non-transformed lymphocytes. Nature. 1981 Dec 24;294(5843):697–699. doi: 10.1038/294697a0. [DOI] [PubMed] [Google Scholar]
  14. Seegmiller J. E., Rosenbloom F. M., Kelley W. N. Enzyme defect associated with a sex-linked human neurological disorder and excessive purine synthesis. Science. 1967 Mar 31;155(3770):1682–1684. doi: 10.1126/science.155.3770.1682. [DOI] [PubMed] [Google Scholar]
  15. Singer J. W., Ernst C., Whalen C. K., Steinmann L., Fialkow P. J. Single or multicellular origin of human T lymphocyte colonies in vitro: modification by 12-o-tetradecanoylphorbol 13-acetate (TPA). J Immunol. 1981 Apr;126(4):1390–1392. [PubMed] [Google Scholar]
  16. Strauss G. H., Albertini R. J. Enumeration of 6-thioguanine-resistant peripheral blood lymphocytes in man as a potential test for somatic cell mutations arising in vivo. Mutat Res. 1979 Jul;61(2):353–379. doi: 10.1016/0027-5107(79)90140-4. [DOI] [PubMed] [Google Scholar]
  17. Sörén L. Variability of the time at which PHA-stimulated lymphocytes initiate DNA synthesis. Exp Cell Res. 1973 Mar 30;78(1):201–208. doi: 10.1016/0014-4827(73)90055-4. [DOI] [PubMed] [Google Scholar]
  18. Thilly W. G., Deluca J. G., Hoppe H., 4th, Penman B. W. Phenotypic lag and mutation to 6-thioguanine resistance in diploid human lymphoblasts. Mutat Res. 1978 Apr;50(1):137–144. doi: 10.1016/0027-5107(78)90068-4. [DOI] [PubMed] [Google Scholar]
  19. Warren S. T., Yotti L. P., Moskal J. R., Chang C. C., Trosko J. E. Metabolic cooperation in CHO and V79 cells following treatment with a tumor promoter. Exp Cell Res. 1981 Feb;131(2):427–430. doi: 10.1016/0014-4827(81)90250-0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES