Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Nov;79(21):6636–6640. doi: 10.1073/pnas.79.21.6636

A phylogeny for the principal alleles of the human phosphoglucomutase-1 locus.

N Takahashi, J V Neel, C Satoh, J Nishizaki, N Masunari
PMCID: PMC347183  PMID: 6216484

Abstract

The results of phosphoglucomutase-1 (PGM1) typings by starch gel electrophoresis and subtypings by isoelectric focusing are presented for a sample of Japanese. A distinction made on the basis of isoelectric focusing (termed "+" and "-") is nonrandomly associated with each of the products of the four most common electrophoretic alleles (PGM1(1), PGM1(2), PGM1(3), and PGM1(7). The isoelectric trait cosegregates with the allele; the degree of nonrandomness of the association varies from allele to allele. Thus, the four alleles become eight. On the basis of these facts plus the additive nature of the pI differences between allele products and the geographical distribution of the alleles, an allele phylogeny can be constructed. This postulates that the eight alleles may be explained by three nucleotide substitutions involving the stem allele plus four intragenic recombinations between these substitutions. The potential of intragenic recombination as a cause of mutation has been insufficiently appreciated.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bark J. E., Harris M. J., Firth M. Typing of the common phosphoglucomutase variants using isoelectric focusing--a new interpretation of the phosphoglucomutase system. J Forensic Sci Soc. 1976 Apr;16(2):115–120. doi: 10.1016/s0015-7368(76)71042-9. [DOI] [PubMed] [Google Scholar]
  2. Blake N. M., Omoto K. Phosphoglucomutase types in the Asian-Pacific area: a critical reveiw including new phenotypes. Ann Hum Genet. 1975 Jan;38(3):251–273. doi: 10.1111/j.1469-1809.1975.tb00610.x. [DOI] [PubMed] [Google Scholar]
  3. CARLSON E. A. Comparative genetics of complex loci. Q Rev Biol. 1959 Mar;34(1):33–67. doi: 10.1086/402574. [DOI] [PubMed] [Google Scholar]
  4. Carter N. D., West C. M., Emes E., Parkin B., Marshall W. H. Phosphoglucomutase polymorphism detected by isoelectric focusing: gene frequencies, evolution and linkage. Ann Hum Biol. 1979 May-Jun;6(3):221–230. doi: 10.1080/03014467900007222. [DOI] [PubMed] [Google Scholar]
  5. Ferrell R. E., Ueda N., Satoh C., Tanis R. J., Neel J. V., Hamilton H. B., Inamizu T., Baba K. The frequency in Japanese of genetic variants of 22 proteins. I. Albumin, ceruloplasmin, haptoglobin, and transferrin. Ann Hum Genet. 1977 May;40(4):407–418. [PubMed] [Google Scholar]
  6. Hopkinson D. A., Harris H. Rare phosphoglucomutase phenotypes. Ann Hum Genet. 1966 Nov;30(2):167–181. doi: 10.1111/j.1469-1809.1966.tb00016.x. [DOI] [PubMed] [Google Scholar]
  7. Kühnl P., Schmidtmann U., Spielmann W. Evidence for two additional common alleles at the PGM1 locus (phosphoglucomutase--E.C.: 2.7.5.1). A comparison by three different techniques. Hum Genet. 1977 Feb 11;35(2):219–223. doi: 10.1007/BF00393973. [DOI] [PubMed] [Google Scholar]
  8. Neel J. V., Satoh C., Hamilton H. B., Otake M., Goriki K., Kageoka T., Fujita M., Neriishi S., Asakawa J. Search for mutations affecting protein structure in children of atomic bomb survivors: preliminary report. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4221–4225. doi: 10.1073/pnas.77.7.4221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Neel J. V., Ueda N., Satoh C., Ferrell R. E., Tanis R. J., Hamilton H. B. The frequency in Japanese of genetic variants of 22 proteins. V. Summary and comparison with data on Caucasians from the British Isles. Ann Hum Genet. 1978 May;41(4):429–441. doi: 10.1111/j.1469-1809.1978.tb00913.x. [DOI] [PubMed] [Google Scholar]
  10. SMITHIES O., CONNELL G. E., DIXON G. H. Chromosomal rearrangements and the evolution of haptoglobin genes. Nature. 1962 Oct 20;196:232–236. doi: 10.1038/196232a0. [DOI] [PubMed] [Google Scholar]
  11. SPENCER N., HOPKINSON D. A., HARRIS H. PHOSPHOGLUCOMUTASE POLYMORPHISM IN MAN. Nature. 1964 Nov 21;204:742–745. doi: 10.1038/204742a0. [DOI] [PubMed] [Google Scholar]
  12. Satoh C., Ferrell R. E., Tanis R. J., Ueda N., Kishimoto S., Neel J. V., Hamilton H. B., Baba K. The frequency in Japanese of genetic variants of 22 proteins. III. Phosphoglucomutase-1, phosphoglucomutase-2, 6-phosphogluconate dehydrogenase, adenylate kinase, and adenosine deaminase. Ann Hum Genet. 1977 Oct;41(2):169–183. doi: 10.1111/j.1469-1809.1977.tb01912.x. [DOI] [PubMed] [Google Scholar]
  13. Scozzari R., Trippa G., Santachiara-Benerecetti A. S., Terrenato L., Iodice C., Benincasa A. Further genetic heterogeneity of human red cell phosphoglucomutase-1: a mon-electrophoretic polymorphism. Ann Hum Genet. 1981 Oct;45(Pt 4):313–322. doi: 10.1111/j.1469-1809.1981.tb00344.x. [DOI] [PubMed] [Google Scholar]
  14. Thompson E. A., Neel J. V. Probability of founder effect in a tribal population. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1442–1445. doi: 10.1073/pnas.75.3.1442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ueda N., Satoh C., Tanis R. J., Ferrell R. E., Kishimoto S., Neel J. V., Hamilton H. B., Baba K. The frequency in Japanese of genetic variants of 22 proteins II. Carbonic anhydrase I and II, lactate dehydrogenase, malate dehydrogenase, nucleoside phosphorylase, triose phosphate isomerase, haemoglobin A and haemoglobin A2. Ann Hum Genet. 1977 Jul;41(1):43–52. doi: 10.1111/j.1469-1809.1977.tb01960.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES