Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Nov;79(21):6690–6692. doi: 10.1073/pnas.79.21.6690

Dexamethasone increases the synthesis of sphingomyelin in 3T3-L1 cell membranes.

D H Nelson, D K Murray
PMCID: PMC347194  PMID: 6959146

Abstract

An acute increase in the sphingomyelin content of a plasma membrane-enriched fraction of 3T3-L1 cells was produced by incubation of the cells with 0.1 microM dexamethasone for 4 hr. Dexamethasone also stimulated the activity of the pathway of sphingomyelin synthesis by utilizing the phosphorylcholine of phosphatidylcholine as a donor to ceramide to synthesize the phospholipid (phosphatidylcholine:ceramide cholinephosphotransferase). Dexamethasone-stimulated increase in the utilization of 14C-labeled choline of phosphatidylcholine for the synthesis of sphingomyelin was inhibited by the addition of cycloheximide to the incubation. Therefore, it appears that corticosteroid stimulation of new protein synthesis was required to produce the effect. An increase in the enzymatic pathway by 83% and of the sphingomyelin content of the plasma membrane-enriched fraction by 50% after incubation with dexamethasone for 4 hr demonstrates the rapidity with which the hormone can produce considerable remodeling of the membrane. The increase in the synthetic pathway in the plasma membrane-enriched fraction was sufficient to account for the measured increase in sphingomyelin. It appears likely that the large increase in membrane sphingomyelin could contribute significantly to the many demonstrated effects of corticosteroids upon membrane processes, including transport, receptors, and enzymatic activity.

Full text

PDF
6690

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  2. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  3. Bernert J. T., Jr, Ullman M. D. Biosynthesis of sphingomyelin from erythro-ceramides and phosphatidylcholine by a microsomal cholinephosphotransferase. Biochim Biophys Acta. 1981 Oct 23;666(1):99–109. doi: 10.1016/0005-2760(81)90095-3. [DOI] [PubMed] [Google Scholar]
  4. Bidot-López P., Farese R. V., Sabir M. A. Parathyroid hormone and adenosine-3',5'-monophosphate acutely increase phospholipids of the phosphatidate-polyphosphoinositide pathway in rabbit kidney cortex tubules in vitro by a cycloheximide-sensitive process. Endocrinology. 1981 Jun;108(6):2078–2081. doi: 10.1210/endo-108-6-2078. [DOI] [PubMed] [Google Scholar]
  5. Carnuccio R., Di Rosa M., Flower R. J., Pinto A. The inhibition by hydrocortisone of prostaglandin biosynthesis in rat peritoneal leucocytes is correlated with intracellular macrocortin levels. Br J Pharmacol. 1981 Oct;74(2):322–324. doi: 10.1111/j.1476-5381.1981.tb09974.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Farese R. V., Sabir M. A., Larson R. E. On the mechanism whereby ACTH and cyclic AMP increase adrenal polyphosphoinositides. Rapid stimulation of the synthesis of phosphatidic acid and derivatives of CDP - diacylglycerol. J Biol Chem. 1980 Aug 10;255(15):7232–7237. [PubMed] [Google Scholar]
  7. Fourcans B., Jain M. K. Role of phospholipids in transport and enzymic reactions. Adv Lipid Res. 1974;12(0):147–226. doi: 10.1016/b978-0-12-024912-1.50011-9. [DOI] [PubMed] [Google Scholar]
  8. Hax W. M., van Kessel W. S. High-performance liquid chromatographic separation and photometric detection of phospholipids. J Chromatogr. 1977 Nov 11;142:735–741. doi: 10.1016/s0021-9673(01)92081-3. [DOI] [PubMed] [Google Scholar]
  9. Hirata F., Axelrod J. Enzymatic synthesis and rapid translocation of phosphatidylcholine by two methyltransferases in erythrocyte membranes. Proc Natl Acad Sci U S A. 1978 May;75(5):2348–2352. doi: 10.1073/pnas.75.5.2348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hirata F., Axelrod J. Phospholipid methylation and biological signal transmission. Science. 1980 Sep 5;209(4461):1082–1090. doi: 10.1126/science.6157192. [DOI] [PubMed] [Google Scholar]
  11. Hirata F., Schiffmann E., Venkatasubramanian K., Salomon D., Axelrod J. A phospholipase A2 inhibitory protein in rabbit neutrophils induced by glucocorticoids. Proc Natl Acad Sci U S A. 1980 May;77(5):2533–2536. doi: 10.1073/pnas.77.5.2533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hong S. L., Levine L. Inhibition of arachidonic acid release from cells as the biochemical action of anti-inflammatory corticosteroids. Proc Natl Acad Sci U S A. 1976 May;73(5):1730–1734. doi: 10.1073/pnas.73.5.1730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Lyman E. M., Knowles C. L., Sribney M. Biosynthesis of sphingomyelin in rat liver endoplasmic reticulum. Can J Biochem. 1976 Apr;54(4):358–364. doi: 10.1139/o76-052. [DOI] [PubMed] [Google Scholar]
  15. Marggraf W. D., Anderer F. A., Kanfer J. N. The formation of sphingomyelin from phosphatidylcholine in plasma membrane preparations from mouse fibroblasts. Biochim Biophys Acta. 1981 Apr 23;664(1):61–73. doi: 10.1016/0005-2760(81)90028-x. [DOI] [PubMed] [Google Scholar]
  16. Marggraf W. D., Zertani R., Anderer F. A., Kanfer J. N. The role of endogenous phosphatidylcholine and ceramide in the biosynthesis of sphingomyelin in mouse fibroblasts. Biochim Biophys Acta. 1982 Mar 12;710(3):314–323. doi: 10.1016/0005-2760(82)90114-x. [DOI] [PubMed] [Google Scholar]
  17. Murray D. K., Nelson D. H. Insulin induced alterations of acyl groups of the cerebroside fraction isolated from fat cell ghosts. Endocrinology. 1981 May;108(5):2014–2016. doi: 10.1210/endo-108-5-2014. [DOI] [PubMed] [Google Scholar]
  18. Murray D. K., Ruhmann-Wennhold A., Nelson D. H. Adrenalectomy decreases the sphingomyelin and cholesterol content of fat cell ghosts. Endocrinology. 1982 Aug;111(2):452–455. doi: 10.1210/endo-111-2-452. [DOI] [PubMed] [Google Scholar]
  19. Murray D. K., Ruhmann-Wennhold A., Nelson D. H. Dexamethasone effect on the phospholipid content of isolated fat cell ghosts from adrenalectomized rats. Endocrinology. 1979 Sep;105(3):774–777. doi: 10.1210/endo-105-3-774. [DOI] [PubMed] [Google Scholar]
  20. Nelson D. H. Corticosteroid-induced changes in phospholipid membranes as mediators of their action. Endocr Rev. 1980 Spring;1(2):180–199. doi: 10.1210/edrv-1-2-180. [DOI] [PubMed] [Google Scholar]
  21. Nelson D. H., Murray D. K., Brady R. O. Dexamethasone-induced change in the sphingomyelin content of human polymorphonuclear leukocytes in vitro. J Clin Endocrinol Metab. 1982 Feb;54(2):292–295. doi: 10.1210/jcem-54-2-292. [DOI] [PubMed] [Google Scholar]
  22. Vance D. E., de Kruijff B. The possible functional significance of phosphatidylethanolamine methylation. Nature. 1980 Nov 20;288(5788):277–279. doi: 10.1038/288277a0. [DOI] [PubMed] [Google Scholar]
  23. Voelker D. R., Kennedy E. P. Cellular and enzymic synthesis of sphingomyelin. Biochemistry. 1982 May 25;21(11):2753–2759. doi: 10.1021/bi00540a027. [DOI] [PubMed] [Google Scholar]
  24. Whittenberger B., Glaser L. Inhibition of DNA synthesis in cultures of 3T3 cells by isolated surface membranes. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2251–2255. doi: 10.1073/pnas.74.6.2251. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES