Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Nov;79(21):6707–6711. doi: 10.1073/pnas.79.21.6707

Immunocytochemical localization of sodium channel distributions in the excitable membranes of Electrophorus electricus.

M H Ellisman, S R Levinson
PMCID: PMC347198  PMID: 6292913

Abstract

The tetrodotoxin binding protein, a major component of the Na+ channel, has been purified from the electric organ of the South American eel Electrophorus electricus. Antibodies to this protein were raised in rabbits and their specificity was demonstrated by a highly sensitive radioimmunoassay and by immunoprecipitation procedures. These antibodies were used to examine the distribution of the binding protein in the eel electroplax membranes and along myelinated nerve axons. The distribution of the antigen was determined by using the peroxidase-antiperoxidase technique at both the light and electron microscopic levels. In the electrocytes of the electric organ, only the innervated face showed staining in experimental material. The stained regions of electroplax plasmalemma included the caveolae of the innervated surface while caveolae of the non-innervated surface did not stain. Thus, the innervated surface including caveolae exclusively contains the Na+ channels. Along myelinated axons, staining was limited to the nodal zone of the node of Ranvier. The paranodal and internodal zones did not stain for the binding protein. Limited diffusion of primary IgG and subsequent reactants into the paranodal and internodal sites was eliminated as a possible source of focal staining at nodes because mechanically demyelinated preparations also exhibited focal nodal staining. Thus, this tetrodotoxin binding protein component of the Na+ channel is located solely within the nodal zone of the node of Ranvier.

Full text

PDF
6707

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agnew W. S., Levinson S. R., Brabson J. S., Raftery M. A. Purification of the tetrodotoxin-binding component associated with the voltage-sensitive sodium channel from Electrophorus electricus electroplax membranes. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2606–2610. doi: 10.1073/pnas.75.6.2606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Agnew W. S., Raftery M. A. Solubilized tetrodotoxin binding component from the electroplax of Electrophorus electricus. Stability as a function of mixed lipid-detergent micelle composition. Biochemistry. 1979 May 15;18(10):1912–1919. doi: 10.1021/bi00577a010. [DOI] [PubMed] [Google Scholar]
  3. Barchi R. L., Cohen S. A., Murphy L. E. Purification from rat sarcolemma of the saxitoxin-binding component of the excitable membrane sodium channel. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1306–1310. doi: 10.1073/pnas.77.3.1306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Benzer T. I., Raftery M. A. Partial characterization of a tetrodotoxin-binding component from nerve membrane. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3634–3637. doi: 10.1073/pnas.69.12.3634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Craig W. S., Kyte J. Stoichiometry and molecular weight of the minimum asymmetric unit of canine renal sodium and potassium ion-activated adenosine triphosphatase. J Biol Chem. 1980 Jul 10;255(13):6262–6269. [PubMed] [Google Scholar]
  6. Darszon A., Vandenberg C. A., Schönfeld M., Ellisman M. H., Spitzer N. C., Montal M. Reassembly of protein-lipid complexes into large bilayer vesicles: perspectives for membrane reconstitution. Proc Natl Acad Sci U S A. 1980 Jan;77(1):239–243. doi: 10.1073/pnas.77.1.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Deguchi N., Jorgensen P. L., Maunsbach A. B. Ultrastructure of the sodium pump. Comparison of thin sectioning, negative staining, and freeze-fracture of purified, membrane-bound (Na+,K+)-ATPase. J Cell Biol. 1977 Dec;75(3):619–634. doi: 10.1083/jcb.75.3.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ellisman M. H., Agnew W. S., Miller J. A., Levinson S. R. Electron microscopic visualization of the tetrodotoxin-binding protein from Electrophorus electricus. Proc Natl Acad Sci U S A. 1982 Jul;79(14):4461–4465. doi: 10.1073/pnas.79.14.4461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ellisman M. H. Molecular specializations of the axon membrane at nodes of Ranvier are not dependent upon myelination. J Neurocytol. 1979 Dec;8(6):719–735. doi: 10.1007/BF01206672. [DOI] [PubMed] [Google Scholar]
  10. Ellisman M. H., Porter K. R. Microtrabecular structure of the axoplasmic matrix: visualization of cross-linking structures and their distribution. J Cell Biol. 1980 Nov;87(2 Pt 1):464–479. doi: 10.1083/jcb.87.2.464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hartshorne R. P., Catterall W. A. Purification of the saxitoxin receptor of the sodium channel from rat brain. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4620–4624. doi: 10.1073/pnas.78.7.4620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jean D. H., Albers R. W. Immunochemical studies on the large polypeptide of electrophorus electroplax (Na+ + K+)-ATPase. Biochim Biophys Acta. 1976 Nov 8;452(1):219–226. doi: 10.1016/0005-2744(76)90074-7. [DOI] [PubMed] [Google Scholar]
  13. Kristol C., Akert K., Sandri C., Wyss U. R., Bennett M. V., Moor H. The Ranvier nodes in the neurogenic electric organ of the knifefish Sternarchus: a freeze-etching study on the distribution of membrane-associated particles. Brain Res. 1977 Apr 15;125(2):197–212. doi: 10.1016/0006-8993(77)90615-1. [DOI] [PubMed] [Google Scholar]
  14. Kristol C., Sandri C., Akert K. Intramembranous particles at the nodes of Ranvier of the cat spinal cord: a morphometric study. Brain Res. 1978 Mar 10;142(3):391–400. doi: 10.1016/0006-8993(78)90903-4. [DOI] [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Levinson S. R., Curatalo C. J., Reed J., Raftery M. A. A rapid and precise assay for tetrodotoxin binding to detergent extracts of excitable tissues. Anal Biochem. 1979 Oct 15;99(1):72–84. doi: 10.1016/0003-2697(79)90045-9. [DOI] [PubMed] [Google Scholar]
  17. Levinson S. R., Ellory J. C. Molecular size of the tetrodotoxin binding site estimated by irradiation inactivation. Nat New Biol. 1973 Sep 26;245(143):122–123. doi: 10.1038/newbio245122a0. [DOI] [PubMed] [Google Scholar]
  18. Levinson S. R. The purity of tritiated tetrodotoxin as determined by bioassay. Philos Trans R Soc Lond B Biol Sci. 1975 Jun 10;270(908):337–348. doi: 10.1098/rstb.1975.0013. [DOI] [PubMed] [Google Scholar]
  19. McLean I. W., Nakane P. K. Periodate-lysine-paraformaldehyde fixative. A new fixation for immunoelectron microscopy. J Histochem Cytochem. 1974 Dec;22(12):1077–1083. doi: 10.1177/22.12.1077. [DOI] [PubMed] [Google Scholar]
  20. Narahashi T. Chemicals as tools in the study of excitable membranes. Physiol Rev. 1974 Oct;54(4):813–889. doi: 10.1152/physrev.1974.54.4.813. [DOI] [PubMed] [Google Scholar]
  21. Nonner W., Rojas E., Stämpfli R. Gating currents in the node of Ranvier: voltage and time dependence. Philos Trans R Soc Lond B Biol Sci. 1975 Jun 10;270(908):483–492. doi: 10.1098/rstb.1975.0024. [DOI] [PubMed] [Google Scholar]
  22. Peters A. The node of Ranvier in the central nervous system. Q J Exp Physiol Cogn Med Sci. 1966 Jul;51(3):229–236. doi: 10.1113/expphysiol.1966.sp001852. [DOI] [PubMed] [Google Scholar]
  23. Ritchie J. M., Rogart R. B. Density of sodium channels in mammalian myelinated nerve fibers and nature of the axonal membrane under the myelin sheath. Proc Natl Acad Sci U S A. 1977 Jan;74(1):211–215. doi: 10.1073/pnas.74.1.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Udenfriend S., Stein S., Böhlen P., Dairman W., Leimgruber W., Weigele M. Fluorescamine: a reagent for assay of amino acids, peptides, proteins, and primary amines in the picomole range. Science. 1972 Nov 24;178(4063):871–872. doi: 10.1126/science.178.4063.871. [DOI] [PubMed] [Google Scholar]
  25. Wiley-Livingston C. A., Ellisman M. H. Myelination-dependent axonal membrane specializations demonstrated in insufficiently myelinated nerves of the dystrophic mouse. Brain Res. 1981 Nov 9;224(1):55–67. doi: 10.1016/0006-8993(81)91116-1. [DOI] [PubMed] [Google Scholar]
  26. Wiley-Livingston C., Ellisman M. H. Development of axonal membrane specializations defines nodes of Ranvier and precedes Schwann cell myelin elaboration. Dev Biol. 1980 Oct;79(2):334–355. doi: 10.1016/0012-1606(80)90120-7. [DOI] [PubMed] [Google Scholar]
  27. Wiley C. A., Ellisman M. H. Rows of dimeric-particles within the axolemma and juxtaposed particles within glia, incorporated into a new model for the paranodal glial-axonal junction at the node of Ranvier. J Cell Biol. 1980 Feb;84(2):261–280. doi: 10.1083/jcb.84.2.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wood J. G., Jean D. H., Whitaker J. N., McLaughlin B. J., Albers R. W. Immunocytochemical localization of the sodium, potassium activated ATPase in knifefish brain. J Neurocytol. 1977 Oct;6(5):571–581. doi: 10.1007/BF01205220. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES