Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Nov;79(22):6807–6811. doi: 10.1073/pnas.79.22.6807

Proton NMR of the histidines of azurin from Alcaligenes faecalis: linkage of histidine-35 with redox kinetics.

S Mitra, R Bersohn
PMCID: PMC347222  PMID: 6960351

Abstract

On the basis of redox kinetic studies, Rosen and Pecht [Rosen, P. & Pecht, I. (1976) Biochemistry 15, 775-786] postulated a slowly attained (approximately equal to 0.1 sec) conformational equilibrium between two forms of reduced azurin from the bacterium Pseudomonas aeruginosa, one form being faster in electron transfer. NMR investigations have shown that at pH 7 there are two forms of reduced azurin exchanging slowly with each other, differing in the presence or absence of a proton on the imidazole side chain of histidine-35. Rosen et al. [Rosen, P., Segal, M. & Pecht, I. (1981) Eur. J. Biochem. 120, 339-344] observed that the azurin from the bacterium Alcaligenes faecalis shows no such slowly attained equilibrium between two forms. Therefore, a 1H NMR study was carried out on this azurin with emphasis on the downfield region. A resonance was found at 7.95 ppm downfield that does not move with pH, is not seen in the oxidized protein, has the same pseudocontact shift in the Co(II) derivative as the C-2 proton of histidine-35 has in the Co(II) derivative of P. aeruginosa azurin, and, in the apoprotein, exhibits a typical protonation shift downfield at pH less than 5. Therefore, this resonance is assigned to the C-2 proton of histidine-35. The crystal structure of P. aeruginosa azurin shows that at pH 7 the imidazole side chain of histidine-35 is in a crevice within the protein, where its ring is adjacent and parallel to that of histidine-47, a copper ligand. The preceding observations combined with others show that the kinetics of some redox reactions involving azurin depend on the position of histidine-35. The implication is that there is a pathway for electron transport to the copper atom involving passage through histidine-35.

Full text

PDF
6807

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adman E. T., Stenkamp R. E., Sieker L. C., Jensen L. H. A crystallographic model for azurin a 3 A resolution. J Mol Biol. 1978 Jul 25;123(1):35–47. doi: 10.1016/0022-2836(78)90375-3. [DOI] [PubMed] [Google Scholar]
  2. Allen H., Hill O., Smith B. E., Storm C. B. The proton magnetic resonance spectra of a cobalt (II) azurin. Biochem Biophys Res Commun. 1976 Jun 7;70(3):783–790. doi: 10.1016/0006-291x(76)90660-4. [DOI] [PubMed] [Google Scholar]
  3. Antonini E., Finazzi-Agrò A., Avigliano A., Guerrieri P., Rotilio G., Mondovì B. Kinetics of electron transfer between azurin and cytochrome 551 from Pseudomonas. J Biol Chem. 1970 Sep 25;245(18):4847–4849. [PubMed] [Google Scholar]
  4. Campbell I. D., Lindskog S., White A. I. A study of the histidine residues of human carbonic anhydrase B using 270 MHz proton magnetic resonance. J Mol Biol. 1974 Dec 15;90(3):469–489. doi: 10.1016/0022-2836(74)90229-0. [DOI] [PubMed] [Google Scholar]
  5. Fujii S., Akasaka K., Hatano H. Acid denaturation steps of Streptomyces subtilisin inhibitor. A proton magnetic resonance study of individual histidine environment. J Biochem. 1980 Sep;88(3):789–796. doi: 10.1093/oxfordjournals.jbchem.a133032. [DOI] [PubMed] [Google Scholar]
  6. Gudat J. C., Singh J., Wharton D. C. Cytochrome oxidase from Pseudomonas aeruginosa. I. Purification and some properties. Biochim Biophys Acta. 1973 Feb 22;292(2):376–390. doi: 10.1016/0005-2728(73)90044-3. [DOI] [PubMed] [Google Scholar]
  7. Hill H. A., Leer J. C., Smith B. E., Storm C. B. A possible approach to the investigation of the structures of copper proteins: H N.M.R. spectra of azurin. Biochem Biophys Res Commun. 1976 May 17;70(2):331–338. doi: 10.1016/0006-291x(76)91050-0. [DOI] [PubMed] [Google Scholar]
  8. Hill H. A., Smith B. E. Characteristics of azurin from Pseudomonas aeruginosa via 270-MHz 1H nuclear magnetic resonance spectroscopy. J Inorg Biochem. 1979 Oct;11(2):79–93. doi: 10.1016/s0162-0134(00)80174-9. [DOI] [PubMed] [Google Scholar]
  9. McMillin D. R., Rosenberg R. C., Gray H. B. Preparation and spectroscopic studies of cobalt(II) derivatives of blue copper proteins. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4760–4762. doi: 10.1073/pnas.71.12.4760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mitra S., Bersohn R. Location of the heme groups in cytochrome cd1 oxidase from Pseudomonas aeruginosa. Biochemistry. 1980 Jul 8;19(14):3200–3203. doi: 10.1021/bi00555a015. [DOI] [PubMed] [Google Scholar]
  11. Rosen P., Pecht I. Conformational equilibria accompanying the electron transfer between cytochrome c (P551) and azurin from Pseudomonas aeruginosa. Biochemistry. 1976 Feb 24;15(4):775–786. doi: 10.1021/bi00649a008. [DOI] [PubMed] [Google Scholar]
  12. Rosen P., Segal M., Pecht I. Electron transfer between azurin from Alcaligenes faecalis and cytochrome c551 from Pseudomonas aeruginosa. Eur J Biochem. 1981 Nov;120(2):339–344. doi: 10.1111/j.1432-1033.1981.tb05709.x. [DOI] [PubMed] [Google Scholar]
  13. Solomon E. I., Hare J. W., Gray H. B. Spectroscopic studies and a structural model for blue copper centers in proteins. Proc Natl Acad Sci U S A. 1976 May;73(5):1389–1393. doi: 10.1073/pnas.73.5.1389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ugurbil K., Bersohn R. Nuclear magnetic resonance study of exchangeable and nonexchangeable protons in azurin from Pseudomonas aeruginosa. Biochemistry. 1977 Jun 28;16(13):3016–3023. doi: 10.1021/bi00632a032. [DOI] [PubMed] [Google Scholar]
  15. Wherland S., Pecht I. Protein-protein electron transfer. A Marcus theory analysis of reactions between c type cytochromes and blue copper proteins. Biochemistry. 1978 Jun 27;17(13):2585–2591. doi: 10.1021/bi00606a020. [DOI] [PubMed] [Google Scholar]
  16. Wilson M. T., Greenwood C., Brunori M., Antonini E. Electron transfer between azurin and cytochrone c-551 from Pseudomonas aeruginosa. Biochem J. 1975 Mar;145(3):449–457. doi: 10.1042/bj1450449. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES