Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Nov;79(22):6866–6870. doi: 10.1073/pnas.79.22.6866

Lateral mobility of cytochrome c on intact mitochondrial membranes as determined by fluorescence redistribution after photobleaching.

J H Hochman, M Schindler, J G Lee, S Ferguson-Miller
PMCID: PMC347234  PMID: 6294660

Abstract

Lateral mobility of an active fluorescent derivative of cytochrome c on the membranes of giant mitochondria was measured by fluorescence redistribution after photobleaching. A diffusion coefficient of 1.6 X 10(-10) cm2/sec was determined for the labeled cytochrome c on inner mitochondrial membranes under conditions where succinate oxidase activity was demonstrated. This relatively low rate of diffusion, together with results of other investigators, is explained in terms of a model involving a dynamic equilibrium between freely diffusing and associated forms of electron-transfer components.

Full text

PDF
6866

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed A. J., Smith H. T., Smith M. B., Millett F. S. Effect of specific lysine modification on the reduction of cytochrome c by succinate-cytochrome c reductase. Biochemistry. 1978 Jun 27;17(13):2479–2483. doi: 10.1021/bi00606a003. [DOI] [PubMed] [Google Scholar]
  2. Axelrod D., Koppel D. E., Schlessinger J., Elson E., Webb W. W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J. 1976 Sep;16(9):1055–1069. doi: 10.1016/S0006-3495(76)85755-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bisson R., Gutweniger H., Montecucco C., Colonna R., Zanotti A., Azzi A. Covalent binding of arylazido derivatives of cytochrome c to cytochrome oxidase. FEBS Lett. 1977 Sep 1;81(1):147–150. doi: 10.1016/0014-5793(77)80948-4. [DOI] [PubMed] [Google Scholar]
  4. Brautigan D. L., Ferguson-Miller S., Margoliash E. Definition of cytochrome c binding domains by chemical modification. I. Reaction with 4-chloro-3,5-dinitrobenzoate and chromatographic separation of singly substituted derivatives. J Biol Chem. 1978 Jan 10;253(1):130–139. [PubMed] [Google Scholar]
  5. Brautigan D. L., Ferguson-Miller S., Margoliash E. Mitochondrial cytochrome c: preparation and activity of native and chemically modified cytochromes c. Methods Enzymol. 1978;53:128–164. doi: 10.1016/s0076-6879(78)53021-8. [DOI] [PubMed] [Google Scholar]
  6. Brautigan D. L., Ferguson-Miller S., Tarr G. E., Margoliash E. Definition of cytochrome c binding domains by chemical modification. II. Identification and properties of singly substituted carboxydinitrophenyl cytochromes c at lysines 8, 13, 22, 27, 39, 60, 72, 87, and 99. J Biol Chem. 1978 Jan 10;253(1):140–148. [PubMed] [Google Scholar]
  7. Chance B. The function of cytochrome c. Ann N Y Acad Sci. 1974 Feb 18;227:613–626. doi: 10.1111/j.1749-6632.1974.tb14425.x. [DOI] [PubMed] [Google Scholar]
  8. Erecińska M., Vanderkooi J. M., Wilson D. F. Cytochrome c interactions with membranes. A photoaffinity-labeled cytochrome c. Arch Biochem Biophys. 1975 Nov;171(1):108–116. doi: 10.1016/0003-9861(75)90013-2. [DOI] [PubMed] [Google Scholar]
  9. Ferguson-Miller S., Brautigan D. L., Margoliash E. Correlation of the kinetics of electron transfer activity of various eukaryotic cytochromes c with binding to mitochondrial cytochrome c oxidase. J Biol Chem. 1976 Feb 25;251(4):1104–1115. [PubMed] [Google Scholar]
  10. Ferguson-Miller S., Brautigan D. L., Margoliash E. Definition of cytochrome c binding domains by chemical modification. III. Kinetics of reaction of carboxydinitrophenyl cytochromes c with cytochrome c oxidase. J Biol Chem. 1978 Jan 10;253(1):149–159. [PubMed] [Google Scholar]
  11. Fuller S. D., Capaldi R. A., Henderson R. Structure of cytochrome c oxidase in deoxycholate-drived two-dimensional crystals. J Mol Biol. 1979 Oct 25;134(2):305–327. doi: 10.1016/0022-2836(79)90037-8. [DOI] [PubMed] [Google Scholar]
  12. Fuller S. D., Darley-Usmar V. M., Capaldi R. A. Covalent complex between yeast cytochrome c and beef heart cytochrome c oxidase which is active in electron transfer. Biochemistry. 1981 Nov 24;20(24):7046–7053. doi: 10.1021/bi00527a043. [DOI] [PubMed] [Google Scholar]
  13. HATEFI Y., HAAVIK A. G., FOWLER L. R., GRIFFITHS D. E. Studies on the electron transfer system. XLII. Reconstitution of the electron transfer system. J Biol Chem. 1962 Aug;237:2661–2669. [PubMed] [Google Scholar]
  14. Hanski E., Rimon G., Levitzki A. Adenylate cyclase activation by the beta-adrenergic receptors as a diffusion-controlled process. Biochemistry. 1979 Mar 6;18(5):846–853. doi: 10.1021/bi00572a017. [DOI] [PubMed] [Google Scholar]
  15. Kawato S., Sigel E., Carafoli E., Cherry R. J. Cytochrome oxidase rotates in the inner membrane of intact mitochondria and submitochondrial particles. J Biol Chem. 1980 Jun 25;255(12):5508–5510. [PubMed] [Google Scholar]
  16. Kawato S., Sigel E., Carafoli E., Cherry R. J. Rotation of cytochrome oxidase in phospholipid vesicles. Investigations of interactions between cytochrome oxidases and between cytochrome oxidase and cytochrome bc1 complex. J Biol Chem. 1981 Jul 25;256(14):7518–7527. [PubMed] [Google Scholar]
  17. Koppel D. E. Fluorescence redistribution after photobleaching. A new multipoint analysis of membrane translational dynamics. Biophys J. 1979 Nov;28(2):281–291. doi: 10.1016/S0006-3495(79)85176-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Koppel D. E., Sheetz M. P., Schindler M. Lateral diffusion in biological membranes. A normal-mode analysis of diffusion on a spherical surface. Biophys J. 1980 Apr;30(1):187–192. doi: 10.1016/S0006-3495(80)85087-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Koppenol W. H., Margoliash E. The asymmetric distribution of charges on the surface of horse cytochrome c. Functional implications. J Biol Chem. 1982 Apr 25;257(8):4426–4437. [PubMed] [Google Scholar]
  20. Nicholls P. Cytochrome c binding to enzymes and membranes. Biochim Biophys Acta. 1974 Dec 30;346(3-4):261–310. doi: 10.1016/0304-4173(74)90003-2. [DOI] [PubMed] [Google Scholar]
  21. Overfield R. E., Wraight C. A. Oxidation of cytochromes c and c2 by bacterial photosynthetic reaction centers in phospholipid vesicles. 1. Studies with neutral membranes. Biochemistry. 1980 Jul 8;19(14):3322–3327. doi: 10.1021/bi00555a034. [DOI] [PubMed] [Google Scholar]
  22. Overfield R. E., Wraight C. A. Oxidation of cytochromes c and c2 by bacterial photosynthetic reaction centers in phospholipid vesicles. 2. Studies with negative membranes. Biochemistry. 1980 Jul 8;19(14):3328–3334. doi: 10.1021/bi00555a035. [DOI] [PubMed] [Google Scholar]
  23. Peters R., Peters J., Tews K. H., Bähr W. A microfluorimetric study of translational diffusion in erythrocyte membranes. Biochim Biophys Acta. 1974 Nov 15;367(3):282–294. doi: 10.1016/0005-2736(74)90085-6. [DOI] [PubMed] [Google Scholar]
  24. Rieder R., Bosshard H. R. Cytochrome bc1 and cytochrome oxidase can bind to the same surface domain of the cytochrome c molecule. FEBS Lett. 1978 Aug 15;92(2):223–226. doi: 10.1016/0014-5793(78)80759-5. [DOI] [PubMed] [Google Scholar]
  25. Roberts H., Hess B. Kinetics of cytochrome c oxidase from yeast. Membrane-facilitated electrostatic binding of cytochrone c showing a specific interaction with cytochrome c oxidase and inhibition by ATP. Biochim Biophys Acta. 1977 Oct 12;462(1):215–234. doi: 10.1016/0005-2728(77)90204-3. [DOI] [PubMed] [Google Scholar]
  26. Rosevear P., VanAken T., Baxter J., Ferguson-Miller S. Alkyl glycoside detergents: a simpler synthesis and their effects on kinetic and physical properties of cytochrome c oxidase. Biochemistry. 1980 Aug 19;19(17):4108–4115. doi: 10.1021/bi00558a032. [DOI] [PubMed] [Google Scholar]
  27. Schlessinger J., Shechter Y., Cuatrecasas P., Willingham M. C., Pastan I. Quantitative determination of the lateral diffusion coefficients of the hormone-receptor complexes of insulin and epidermal growth factor on the plasma membrane of cultured fibroblasts. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5353–5357. doi: 10.1073/pnas.75.11.5353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schramm M. Transfer of glucagon receptor from liver membranes to a foreign adenylate cyclase by a membrane fusion procedure. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1174–1178. doi: 10.1073/pnas.76.3.1174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sowers A. E., Hackenbrock C. R. Rate of lateral diffusion of intramembrane particles: measurement by electrophoretic displacement and rerandomization. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6246–6250. doi: 10.1073/pnas.78.10.6246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Speck S. H., Ferguson-Miller S., Osheroff N., Margoliash E. Definition of cytochrome c binding domains by chemical modification: kinetics of reaction with beef mitochondrial reductase and functional organization of the respiratory chain. Proc Natl Acad Sci U S A. 1979 Jan;76(1):155–159. doi: 10.1073/pnas.76.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tandler B., Hoppel C. L. Division of giant mitochondria during recovery from cuprizone intoxication. J Cell Biol. 1973 Jan;56(1):266–272. doi: 10.1083/jcb.56.1.266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Thompson D. A., Suárez-Villafañe M., Ferguson-Miller S. The active form of cytochrome c oxidase: effects of detergent, the intact membrane, and radiation inactivation. Biophys J. 1982 Jan;37(1):285–293. doi: 10.1016/S0006-3495(82)84677-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Utsumi K., Packer L. Glutaraldehyde-fixed mitochondria. I. Enzyme activity, ion translocation, and conformational changes. Arch Biochem Biophys. 1967 Sep;121(3):633–640. doi: 10.1016/0003-9861(67)90048-3. [DOI] [PubMed] [Google Scholar]
  34. Waring A., Davis J. S., Chance B., Erecińska M. Low temperature kinetic studies on rat liver mitochondria containing covalently linked derivatives of cytochrome c. J Biol Chem. 1980 Jul 10;255(13):6212–6218. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES