Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Nov;79(22):6871–6875. doi: 10.1073/pnas.79.22.6871

Purification, primary structure, and homology relationships of a chloroplast ribosomal protein

Marius Bartsch 1, Makoto Kimura 1, Alap-Raman Subramanian 1,*
PMCID: PMC347235  PMID: 16593249

Abstract

A chloroplast ribosomal protein that showed immunological homology to Escherichia coli ribosomal protein L12 was purified from spinach (Spinacia oleracea) leaves and its primary structure was determined by manual micro Edman degradation. The protein is composed of 130 amino acid residues and has Mr 13,576. It shows structural features characteristic of the L12 proteins of eubacterial 70S ribosomes (e.g., identical amino acid residues in about 50% of the sequence) but no apparent homology to the L12-type proteins of eukaryotic cytoplasmic 80S ribosomes. The homology to eubacterial proteins is highest in the COOH-terminal region (70%) and low in the NH2-terminal region (<20%).

Keywords: amino acid sequence, protein evolution, organelle ribosome, acidic L7, L12 protein, Spinacia oleracea

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bedbrook J. R., Kolodner R., Bogorad L. Zea mays chloroplast ribosomal RNA genes are part of a 22,000 base pair inverted repeat. Cell. 1977 Aug;11(4):739–749. doi: 10.1016/0092-8674(77)90288-4. [DOI] [PubMed] [Google Scholar]
  2. Boardman N. K., Francki R. I., Wildman S. G. Protein synthesis by cell-free extracts of tobacco leaves. 3. Comparison of the physical properties and protein synthesizing activities of 70 s chloroplast and 80 s cytoplasmic ribosomes. J Mol Biol. 1966 Jun;17(2):470–487. doi: 10.1016/s0022-2836(66)80157-2. [DOI] [PubMed] [Google Scholar]
  3. Grivell L. A., Groot G. S.P. Spinach chloroplast ribosomes active in protein synthesis. FEBS Lett. 1972 Sep 1;25(1):21–24. doi: 10.1016/0014-5793(72)80444-7. [DOI] [PubMed] [Google Scholar]
  4. Gualerzi C., Janda H. G., Passow H., Stöffler G. Studies on the protein moiety of plant ribosomes. Enumeration of the proteins of the ribosomal subunits and determination of the degree of evolutionary conservation by electrophoretic and immunochemical methods. J Biol Chem. 1974 Jun 10;249(11):3347–3355. [PubMed] [Google Scholar]
  5. Hamel E., Koka M., Nakamoto T. Requirement of an Escherichia coli 50 S ribosomal protein component for effective interaction of the ribosome with T and G factors and with guanosine triphosphate. J Biol Chem. 1972 Feb 10;247(3):805–814. [PubMed] [Google Scholar]
  6. Itoh T. Primary structure of an acidic ribosomal protein from Micrococcus lysodeikticus. FEBS Lett. 1981 May 5;127(1):67–70. doi: 10.1016/0014-5793(81)80342-0. [DOI] [PubMed] [Google Scholar]
  7. Itoh T., Wittmann-Liebold B. The primary structure of Bacillus subtilis acidic ribosomal protein B-L9 and its comparison with Escherichia coli proteins L7/L12. FEBS Lett. 1978 Dec 15;96(2):392–394. doi: 10.1016/0014-5793(78)80445-1. [DOI] [PubMed] [Google Scholar]
  8. LYTTLETON J. W. Isolation of ribosomes from spinach chloroplasts. Exp Cell Res. 1962 Mar;26:312–317. doi: 10.1016/0014-4827(62)90183-0. [DOI] [PubMed] [Google Scholar]
  9. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  10. Li K., Subramanian A. R. Selective separation procedure for determination of ribosomal proteins L7 and L12. Anal Biochem. 1975 Mar;64(1):121–129. doi: 10.1016/0003-2697(75)90413-3. [DOI] [PubMed] [Google Scholar]
  11. Mets L. J., Bogorad L. Two-dimensional polyacrylamide gel electrophoresis: an improved method for ribosomal proteins. Anal Biochem. 1974 Jan;57(1):200–210. doi: 10.1016/0003-2697(74)90065-7. [DOI] [PubMed] [Google Scholar]
  12. Pettersson I., Liljas A. The stoichiometry and reconstitution of a stable protein complex from Escherichia coli ribosomes. FEBS Lett. 1979 Feb 1;98(1):139–144. doi: 10.1016/0014-5793(79)80170-2. [DOI] [PubMed] [Google Scholar]
  13. SPAHR P. F. Amino acid composition of ribosomes from Escherichia coli. J Mol Biol. 1962 May;4:395–406. doi: 10.1016/s0022-2836(62)80020-5. [DOI] [PubMed] [Google Scholar]
  14. Salnikow J., Lehmann A., Wittmann-Liebold B. Improved automated solid-phase microsequencing of peptides using DABITC. Anal Biochem. 1981 Nov 1;117(2):433–442. doi: 10.1016/0003-2697(81)90803-4. [DOI] [PubMed] [Google Scholar]
  15. Schneeman R., Surzycki S. E. coli ribosomal proteins are cross reactive with antibody prepared against Chlamydomonas reinhardi chloroplast ribosomal subunit. Mol Gen Genet. 1979 Oct 2;176(1):95–104. doi: 10.1007/BF00334300. [DOI] [PubMed] [Google Scholar]
  16. Stöffler G., Wittmann H. G. Sequence differences of Escherichia coli 30S ribosomal proteins as determined by immunochemical methods. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2283–2287. doi: 10.1073/pnas.68.9.2283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Subramanian A. R. Copies of proteins L7 and L12 and heterogeneity of the large subunit of Escherichia coli ribosome. J Mol Biol. 1975 Jun 15;95(1):1–8. doi: 10.1016/0022-2836(75)90330-7. [DOI] [PubMed] [Google Scholar]
  18. Subramanian A. R. Sensitive separation procedure for Escherichia coli ribosomal proteins and the resolution of high-molecular-weight components. Eur J Biochem. 1974 Jun 15;45(2):541–546. doi: 10.1111/j.1432-1033.1974.tb03579.x. [DOI] [PubMed] [Google Scholar]
  19. Terhorst C., Möller W., Laursen R., Wittmann-Liebold B. Amino acid sequence of a 50 S ribosomal protein involved in both EFG and EFT dependent GTP-hydrolysis. FEBS Lett. 1972 Dec 15;28(3):325–328. doi: 10.1016/0014-5793(72)80742-7. [DOI] [PubMed] [Google Scholar]
  20. Vasconcelos A. C., Bogorad L. Proteins of cytoplasmic, chloroplast, and mitochondrial ribosomes of some plants. Biochim Biophys Acta. 1971 Jan 28;228(2):492–502. doi: 10.1016/0005-2787(71)90054-2. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES