Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Nov;79(22):6876–6880. doi: 10.1073/pnas.79.22.6876

Extensive intragenic sequence homology in two distinct rat lens gamma-crystallin cDNAs suggests duplications of a primordial gene.

R J Moormann, J T den Dunnen, H Bloemendal, J G Schoenmakers
PMCID: PMC347236  PMID: 6294661

Abstract

The nucleotide sequences of two different rat lens gamma-crystallin cDNA clones, pRL gamma 2 and pRL gamma 3, have been determined. pRL gamma 3 contains the complete coding information for a gamma-crystallin of 173 amino acids whereas pRL gamma 2 is incomplete in that it lacks the codons for the first three amino acids of a separate but very homologous gamma-crystallin of identical length. Both rat gamma-crystallins are homologous to the known amino acid sequence of bovine gamma-crystallin II which is only a single amino acid longer. The length of the region downstream the coding sequence to the A-A-T-A-A-A polyadenylylation signal sequence is 40 nucleotides in each clone. In pRL gamma 3 the poly(A) signal sequence is followed at 14 nucleotides by a remnant of the poly(A) tail which indicates that this clone contains a complete 3' noncoding region. pRL gamma 2 has only seven nucleotides following this signal sequence and no poly(A) tail, suggesting an incomplete 3' end. The cDNA clones show an overall nucleotide sequence homology of 85%. The mutual homology at the amino acid level is 73% whereas their amino acid homology with bovine gamma-crystallin II is about 70%. The nucleotide sequence of each clone also reveals a high intragenic homology and seems to be duplicated in itself. We suggest that the gamma-crystallin genes have arisen by multiple duplications of a primordial gene which consisted of about 120 nucleotides.

Full text

PDF
6876

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Askren C. C., Yu N. T., Kuck J. F., Jr Variation of the concentration of sulfhydryl along the visual axis of aging lenses by laser Raman optical dissection technique. Exp Eye Res. 1979 Dec;29(6):647–654. doi: 10.1016/0014-4835(79)90020-4. [DOI] [PubMed] [Google Scholar]
  2. Bhat S. P., Jones R. E., Sullivan M. A., Piatigorsky J. Chicken lens crystallin DNA sequences show at least two delta-crystallin genes. Nature. 1980 Mar 20;284(5753):234–238. doi: 10.1038/284234a0. [DOI] [PubMed] [Google Scholar]
  3. Blundell T., Lindley P., Miller L., Moss D., Slingsby C., Tickle I., Turnell B., Wistow G. The molecular structure and stability of the eye lens: x-ray analysis of gamma-crystallin II. Nature. 1981 Feb 26;289(5800):771–777. doi: 10.1038/289771a0. [DOI] [PubMed] [Google Scholar]
  4. Croft L. R. The amino acid sequence of -crystallin (fraction II) from calf lens. Biochem J. 1972 Jul;128(4):961–970. doi: 10.1042/bj1280961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dodemont H. J., Andreoli P. M., Moormann R. J., Ramaekers F. C., Schoenmakers J. G., Bloemendal H. Molecular cloning of mRNA sequences encoding rat lens crystallins. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5320–5324. doi: 10.1073/pnas.78.9.5320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. East E. J., Chang R. C., Yu N. T., Kuck J. F., Jr Raman spectroscopic measurement of total sulfhydryl in intact lens as affected by aging and ultraviolet irradiation. Deuterium exchange as a probe for accessible sulfhydryl in living tissue. J Biol Chem. 1978 Mar 10;253(5):1436–1441. [PubMed] [Google Scholar]
  7. Efstratiadis A., Posakony J. W., Maniatis T., Lawn R. M., O'Connell C., Spritz R. A., DeRiel J. K., Forget B. G., Weissman S. M., Slightom J. L. The structure and evolution of the human beta-globin gene family. Cell. 1980 Oct;21(3):653–668. doi: 10.1016/0092-8674(80)90429-8. [DOI] [PubMed] [Google Scholar]
  8. Goeddel D. V., Leung D. W., Dull T. J., Gross M., Lawn R. M., McCandliss R., Seeburg P. H., Ullrich A., Yelverton E., Gray P. W. The structure of eight distinct cloned human leukocyte interferon cDNAs. Nature. 1981 Mar 5;290(5801):20–26. doi: 10.1038/290020a0. [DOI] [PubMed] [Google Scholar]
  9. King C. R., Shinohara T., Piatigorsky J. alpha A-crystallin messenger RNA of the mouse lens: more noncoding than coding sequences. Science. 1982 Feb 19;215(4535):985–987. doi: 10.1126/science.7156978. [DOI] [PubMed] [Google Scholar]
  10. Konkel D. A., Maizel J. V., Jr, Leder P. The evolution and sequence comparison of two recently diverged mouse chromosomal beta--globin genes. Cell. 1979 Nov;18(3):865–873. doi: 10.1016/0092-8674(79)90138-7. [DOI] [PubMed] [Google Scholar]
  11. Kronenberg M. N., Roberts B. E., Efstratiadis A. The 3' noncoding region of beta-globin mRNA is not essential for in vitro translation. Nucleic Acids Res. 1979 Jan;6(1):153–166. doi: 10.1093/nar/6.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lomedico P., Rosenthal N., Efstratidadis A., Gilbert W., Kolodner R., Tizard R. The structure and evolution of the two nonallelic rat preproinsulin genes. Cell. 1979 Oct;18(2):545–558. doi: 10.1016/0092-8674(79)90071-0. [DOI] [PubMed] [Google Scholar]
  13. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  14. Messing J., Crea R., Seeburg P. H. A system for shotgun DNA sequencing. Nucleic Acids Res. 1981 Jan 24;9(2):309–321. doi: 10.1093/nar/9.2.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Moormann R. J., van der Velden H. M., Dodemont H. J., Andreoli P. M., Bloemendal H., Schoenmakers J. G. An unusually long non-coding region in rat lens alpha-crystallin messenger RNA. Nucleic Acids Res. 1981 Oct 10;9(19):4813–4822. doi: 10.1093/nar/9.19.4813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nunberg J. H., Kaufman R. J., Chang A. C., Cohen S. N., Schimke R. T. Structure and genomic organization of the mouse dihydrofolate reductase gene. Cell. 1980 Feb;19(2):355–364. doi: 10.1016/0092-8674(80)90510-3. [DOI] [PubMed] [Google Scholar]
  17. Ocken P. R., Fu S. C., Hart R., White J. H., Wagner B. J., Lewis K. E. Characterization of lens proteins I. Identification of additional soluble fractions in rat lenses. Exp Eye Res. 1977 Apr;24(4):355–367. doi: 10.1016/0014-4835(77)90148-8. [DOI] [PubMed] [Google Scholar]
  18. Papaconstantinou J. Biochemistry of bovine lens proteins. II. The gamma-crystallins of adult bovine, calf and embryonic lenses. Biochim Biophys Acta. 1965 Aug 24;107(1):81–90. doi: 10.1016/0304-4165(65)90390-9. [DOI] [PubMed] [Google Scholar]
  19. Proudfoot N. J., Brownlee G. G. 3' non-coding region sequences in eukaryotic messenger RNA. Nature. 1976 Sep 16;263(5574):211–214. doi: 10.1038/263211a0. [DOI] [PubMed] [Google Scholar]
  20. SPECTOR A., KATZ E. THE DEAGGREGATION OF BOVINE LENS ALPHA-CRYSTALLIN. J Biol Chem. 1965 May;240:1979–1985. [PubMed] [Google Scholar]
  21. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Siezen R. J., Bindels J. G., Hoenders H. J. The quaternary structure of bovine alpha-crystallin. Size and charge microheterogeneity: more than 1000 different hybrids? Eur J Biochem. 1978 Nov 15;91(2):387–396. doi: 10.1111/j.1432-1033.1978.tb12691.x. [DOI] [PubMed] [Google Scholar]
  23. Slingsby C., Croft L. R. Developmental changes in the low molecular weight proteins of the bovine lens. Exp Eye Res. 1973 Nov 25;17(4):369–376. doi: 10.1016/0014-4835(73)90246-7. [DOI] [PubMed] [Google Scholar]
  24. Slingsby C., Croft L. R. Structural studies on calf lens gamma-crystallin fraction IV: a comparison of the cysteine-containing tryptic peptides with the corresponding amino acid sequence of gamma-crystallin fraction II. Exp Eye Res. 1978 Mar;26(3):291–304. doi: 10.1016/0014-4835(78)90076-3. [DOI] [PubMed] [Google Scholar]
  25. Stein J. P., Catterall J. F., Kristo P., Means A. R., O'Malley B. W. Ovomucoid intervening sequences specify functional domains and generate protein polymorphism. Cell. 1980 Oct;21(3):681–687. doi: 10.1016/0092-8674(80)90431-6. [DOI] [PubMed] [Google Scholar]
  26. Tomarev S. I., Dolgilevich S. M., Kozlov K. A., Zinovieva R. D., Dzhumagaliev E. B., Kogan G. L., Skobeleva N. A., Mikhailov A. T., Frolova LYu, Gause G. G., Jr Molecular cloning of double-stranded cDNA from the eye lens of the frog Rana temporaria: construction of the cDNA clonotheque and identification of a clone containing the nucleotide sequences of the lambda-crystallin gene. Gene. 1982 Feb;17(2):131–138. doi: 10.1016/0378-1119(82)90065-8. [DOI] [PubMed] [Google Scholar]
  27. Van Der Ouderaa F. J., De Jong W. W., Hilderink A., Bloemendal H. The amino-acids sequence of the alphaB2 chain of bovine alpha-crystallin. Eur J Biochem. 1974 Nov 1;49(1):157–168. doi: 10.1111/j.1432-1033.1974.tb03821.x. [DOI] [PubMed] [Google Scholar]
  28. Van Kleef F. S., De Jong W. W., Hoenders H. J. Stepwise degradations and deamidation of the eye lens protein alpha-crystallin in ageing. Nature. 1975 Nov 20;258(5532):264–266. doi: 10.1038/258264a0. [DOI] [PubMed] [Google Scholar]
  29. Wada E., Sugiura T., Nakamura H., Tsumita T. Studies on lens proteins of mice with hereditary cataract. I. Comparative studies on the chemical and immunochemical properties of the soluble proteins of cataractous and normal mouse lenses. Biochim Biophys Acta. 1981 Feb 27;667(2):251–259. doi: 10.1016/0005-2795(81)90190-2. [DOI] [PubMed] [Google Scholar]
  30. Wagner B. J., Fu S. C. Characterization of lens proteins. II. gamma-Crystallin of normal and cataractous rat lenses. Exp Eye Res. 1978 Mar;26(3):255–265. doi: 10.1016/0014-4835(78)90073-8. [DOI] [PubMed] [Google Scholar]
  31. Yamada Y., Avvedimento V. E., Mudryj M., Ohkubo H., Vogeli G., Irani M., Pastan I., de Crombrugghe B. The collagen gene: evidence for its evolutinary assembly by amplification of a DNA segment containing an exon of 54 bp. Cell. 1980 Dec;22(3):887–892. doi: 10.1016/0092-8674(80)90565-6. [DOI] [PubMed] [Google Scholar]
  32. Zigman S., Schultz J., Yulo T. Isoelectric focusing of gamma crystallins. I. Characterization of rat lens components. Biochim Biophys Acta. 1970 Dec 22;221(3):576–582. doi: 10.1016/0005-2795(70)90229-1. [DOI] [PubMed] [Google Scholar]
  33. van der Ouderaa F. J., de Jong W. W., Bloemendal H. The amino-acid sequence of the alphaA2 chain of bovine alpha-crystallin. Eur J Biochem. 1973 Nov 1;39(1):207–222. doi: 10.1111/j.1432-1033.1973.tb03119.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES