Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Nov;79(22):6999–7003. doi: 10.1073/pnas.79.22.6999

Rapid identification of Leishmania species by specific hybridization of kinetoplast DNA in cutaneous lesions.

D F Wirth, D M Pratt
PMCID: PMC347262  PMID: 6960359

Abstract

Kinetoplast DNA (kDNA) was isolated from various species of the protozoic parasite Leishmania and analyzed by nucleic acid hybridization to detect species-related heterogeneity of kDNA. Purified DNA isolated from L. mexicana and L. braziliensis displayed no homology in nucleic acid hybridization studies. These results confirmed that rapid kDNA sequence change and evolution is occurring in New World species of Leishmania and suggested that such isolated kDNA could be used as a specific hybridization probe for the rapid identification of Leishmania species by using whole organisms. This work further demonstrates that such species-specific identification is feasible on isolated Leishmania promastigotes and, more important, directly on tissue touch blots derived from the cutaneous lesion. Thus, specific hybridization of isolated kDNA provides the basis for a rapid, accurate method for the diagnosis of human leishmaniasis directly from infected tissue.

Full text

PDF
6999

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnot D. E., Barker D. C. Biochemical identification of cutaneous leishmanias by analysis of kinetoplast DNA. II. Sequence homologies in Leishmania kDNA. Mol Biochem Parasitol. 1981 May;3(1):47–56. doi: 10.1016/0166-6851(81)90076-1. [DOI] [PubMed] [Google Scholar]
  2. Barker D. C., Arnot D. E. Biochemical identification of cutaneous leishmanias by analysis of kinetoplast DNA. I. Ultrastructural and buoyant density analysis. Mol Biochem Parasitol. 1981 May;3(1):33–46. doi: 10.1016/0166-6851(81)90075-x. [DOI] [PubMed] [Google Scholar]
  3. Borst P., Fase-Fowler F., Hoeijmakers J. H., Frasch A. C. Variations in maxi-circle and mini-circle sequences in kinetoplast DNAs from different Trypanosoma brucei strains. Biochim Biophys Acta. 1980 Dec 11;610(2):197–210. doi: 10.1016/0005-2787(80)90001-5. [DOI] [PubMed] [Google Scholar]
  4. Chance M. L., Peters W., Shchory L. Biochemical taxonomy of Leishmania. I. Observations on DNA. Ann Trop Med Parasitol. 1974 Sep;68(3):307–316. [PubMed] [Google Scholar]
  5. Chen K. K., Donelson J. E. Sequences of two kinetoplast DNA minicircles of Tryptanosoma brucei. Proc Natl Acad Sci U S A. 1980 May;77(5):2445–2449. doi: 10.1073/pnas.77.5.2445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cleveland D. W., Lopata M. A., MacDonald R. J., Cowan N. J., Rutter W. J., Kirschner M. W. Number and evolutionary conservation of alpha- and beta-tubulin and cytoplasmic beta- and gamma-actin genes using specific cloned cDNA probes. Cell. 1980 May;20(1):95–105. doi: 10.1016/0092-8674(80)90238-x. [DOI] [PubMed] [Google Scholar]
  7. Englund P. T. The replication of kinetoplast DNA networks in Crithidia fasciculata. Cell. 1978 May;14(1):157–168. doi: 10.1016/0092-8674(78)90310-0. [DOI] [PubMed] [Google Scholar]
  8. Gardener P. J., Chance M. L., Peters W. Biochemical taxonomy of Leishmania. II: Electrophoretic variation of malate dehydrogenase. Ann Trop Med Parasitol. 1974 Sep;68(3):317–325. [PubMed] [Google Scholar]
  9. Hendricks L. D., Wood D. E., Hajduk M. E. Haemoflagellates: commercially available liquid media for rapid cultivation. Parasitology. 1978 Jun;76(3):309–316. doi: 10.1017/s0031182000048186. [DOI] [PubMed] [Google Scholar]
  10. Kilgour V., Gardener P. J., Godfrey D. G., Peters W. Demonstration of electrophoretic variation of two aminotransferases in Leishmania. Ann Trop Med Parasitol. 1974 Jun;68(2):245–246. doi: 10.1080/00034983.1974.11686946. [DOI] [PubMed] [Google Scholar]
  11. Kleisen C. M., Weislogel P. O., Fonck K., Borst P. The structure of kinetoplast DNA. 2. Characterization of a novel component of high complexity present in the kinetoplast DNA network of Crithidia luciliae. Eur J Biochem. 1976 Apr 15;64(1):153–160. doi: 10.1111/j.1432-1033.1976.tb10283.x. [DOI] [PubMed] [Google Scholar]
  12. Kleisen M. C., Borst P., Weijers P. J. The structure of kinetoplast DNA. 1. The mini-circles of Crithidia lucilae are heterogeneous in base sequence. Eur J Biochem. 1976 Apr 15;64(1):141–151. doi: 10.1111/j.1432-1033.1976.tb10282.x. [DOI] [PubMed] [Google Scholar]
  13. Lainson R., Shaw J. J., Ready P. D., Miles M. A., Póvoa M. Leishmaniasis in Brazil: XVI. Isolation and identification of Leishmania species from sandflies, wild mammals and man in north Para State, with particular reference to L. braziliensis guyanensis causative agent of "pian-bois". Trans R Soc Trop Med Hyg. 1981;75(4):530–536. doi: 10.1016/0035-9203(81)90192-9. [DOI] [PubMed] [Google Scholar]
  14. Marsden P. D. Current concepts in parasitology. Leishmaniasis. N Engl J Med. 1979 Feb 15;300(7):350–352. doi: 10.1056/NEJM197902153000706. [DOI] [PubMed] [Google Scholar]
  15. Martin E., Simon M. W., Schaefer F. W., 3rd, Mukkada A. J. Enzymes of carbohydrate metabolism in four human species of Leishmania: a comparative survey. J Protozool. 1976 Nov;23(4):600–607. doi: 10.1111/j.1550-7408.1976.tb03850.x. [DOI] [PubMed] [Google Scholar]
  16. Masuda H., Simpson L., Rosenblatt H., Simpson A. M. Restriction map, partial cloning and localization of 9S and 12S kinetoplast RNA genes on the maxicircle component of the kinetoplast DNA of Leishmania tarentolae. Gene. 1979 May;6(1):51–73. doi: 10.1016/0378-1119(79)90085-4. [DOI] [PubMed] [Google Scholar]
  17. Miles M. A., Póvoa M. M., de Souza A. A., Lainson R., Shaw J. J. Some methods for the enzymic characterization of Latin-American Leishmania with particular reference to Leishmania mexicana amazonensis and subspecies of Leishmania hertigi. Trans R Soc Trop Med Hyg. 1980;74(2):243–252. doi: 10.1016/0035-9203(80)90253-9. [DOI] [PubMed] [Google Scholar]
  18. Morel C., Chiari E., Camargo E. P., Mattei D. M., Romanha A. J., Simpson L. Strains and clones of Trypanosoma cruzi can be characterized by pattern of restriction endonuclease products of kinetoplast DNA minicircles. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6810–6814. doi: 10.1073/pnas.77.11.6810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Morel C., Simpson L. Characterization of pathogenic trypanosomatidae by restriction endonuclease fingerprinting of kinetoplast DNA minicircles. Am J Trop Med Hyg. 1980 Sep;29(5 Suppl):1070–1074. doi: 10.4269/ajtmh.1980.29.1070. [DOI] [PubMed] [Google Scholar]
  20. Neal R. A., Miles R. A. Indirect haemagglutination test for Chagas' disease, with a simple method for survey work. Rev Inst Med Trop Sao Paulo. 1970 Sep-Oct;12(5):325–332. [PubMed] [Google Scholar]
  21. Roffi J., Dedet J. P., Desjeux P., Garré M. T. Detection of circulating antibodies in cutaneous leishmaniasis by enzyme-linked immunosorbent assay (ELISA). Am J Trop Med Hyg. 1980 Mar;29(2):183–189. doi: 10.4269/ajtmh.1980.29.183. [DOI] [PubMed] [Google Scholar]
  22. Simpson L., Berliner J. Isolation of the kinetoplast DNA of Leishmania tarentolae in the form of a network. J Protozool. 1974 May;21(2):382–393. doi: 10.1111/j.1550-7408.1974.tb03675.x. [DOI] [PubMed] [Google Scholar]
  23. Steinert M., Van Assel S., Borst P., Mol J. N., Kleisen C. M., Newton B. A. Specific detection of kinetoplast DNA in cytological preparations of trypanosomes by hybridization with complementary RNA. Exp Cell Res. 1973 Jan;76(1):175–185. doi: 10.1016/0014-4827(73)90433-3. [DOI] [PubMed] [Google Scholar]
  24. Walton B. C., Brooks W. H., Arjona I. Serodiagnosis of American leishmaniasis by indirect fluorescent antibody test. Am J Trop Med Hyg. 1972 May;21(3):296–299. doi: 10.4269/ajtmh.1972.21.296. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES