Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Nov;79(22):7052–7055. doi: 10.1073/pnas.79.22.7052

Preparation and characterization of a pentaammineruthenium(III) derivative of horse heart ferricytochrome c.

K M Yocom, J B Shelton, J R Shelton, W A Schroeder, G Worosila, S S Isied, E Bordignon, H B Gray
PMCID: PMC347273  PMID: 6294670

Abstract

A stable complex between pentaammineruthenium(III) and histidine-33 in horse heart ferricytochrome c is formed in the reaction between aquopentaammineruthenium(II) and the protein at pH 7. HPLC of the tryptic hydrolysate of the modified protein was employed to identify the pentaammineruthenium binding site. Spectroscopic measurements show that the integrity of the native structure in the vicinity of the heme c group is maintained in the ruthenium-modified protein. The reduction potentials are: heme c (Fe3+/2+), 0.26 V; Ru(NH3)5(His-33)3+/2+, 0.15 V (vs. normal hydrogen electrode).

Full text

PDF
7052

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brautigan D. L., Ferguson-Miller S., Margoliash E. Mitochondrial cytochrome c: preparation and activity of native and chemically modified cytochromes c. Methods Enzymol. 1978;53:128–164. doi: 10.1016/s0076-6879(78)53021-8. [DOI] [PubMed] [Google Scholar]
  2. Matthews C. R., Erickson P. M., Froebe C. L. The pentaammineruthenium(III)-histidine complex in ribonuclease A as an optical probe of conformational change. Biochim Biophys Acta. 1980 Aug 21;624(2):499–510. doi: 10.1016/0005-2795(80)90091-4. [DOI] [PubMed] [Google Scholar]
  3. Matthews C. R., Recchia J., Froebe C. L. The pentaammineruthenium(III)histidine complex in ribonuclease A: application to the assignment of histidine proton resonances. Anal Biochem. 1981 Apr;112(2):329–337. doi: 10.1016/0003-2697(81)90301-8. [DOI] [PubMed] [Google Scholar]
  4. Moore G. R., Williams R. J. Nuclear-magnetic-resonance studies of eukaryotic cytochrome c. Assignment of resonances of aromatic amino acids. Eur J Biochem. 1980 Feb;103(3):493–502. doi: 10.1111/j.1432-1033.1980.tb05973.x. [DOI] [PubMed] [Google Scholar]
  5. Recchia J., Matthews C. R., Rhee M. J., Horrocks W. D., Jr Interresidue distance measurements in proteins. Fluorescent energy transfer between tryptophans and a Ru(III)(NH3)5-histidine complex in alpha-lytic protease and lysozyme. Biochim Biophys Acta. 1982 Mar 18;702(1):105–111. doi: 10.1016/0167-4838(82)90032-2. [DOI] [PubMed] [Google Scholar]
  6. Schroeder W. A., Shelton J. B., Shelton J. R., Powars D., Friedman S., Baker J., Finklestein J. Z., Miller B., Johnson C. S., Sharpsteen J. R. Identification of eleven human hemoglobin variants by high-performance liquid chromatography: additional data on functional properties and clinical expression. Biochem Genet. 1982 Feb;20(1-2):133–152. doi: 10.1007/BF00484942. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES