Abstract
We report the results of crystallographic difference maps at 3.0-A resolution of complexes of metal-nucleoside triphosphates with aspartate carbamoyltransferase (carbamoylphosphate:L-aspartate carbamoyltransferase, EC 2.1.3.2) from Escherichia coli. The complexes Gd3+-ATP, Al3+-ATP, and Gd3+-CTP bind to the allosteric effector domain of the enzyme in nearly the same orientation as the metal-free nucleotides. The result is consistent with kinetic observations of nearly identical allosteric efficacy of ATP and CTP and their complexes with cations. The effector Gd3+-GTP, however, binds in a distinctly different conformation and location than does 8-bromoguanosine 5'-triphosphate, reported in a separate investigation [Honzatko, R. B. & Lipscomb, W.N. (1982) J. Mol. Biol. 160, 265-286]. The difference in the binding modes of Gd3+-GTP and the bromo derivative suggests a possible mechanism for the relief of allosteric inhibition of GTP due to metal cations. We observe no binding of metal-nucleoside triphosphates in the region of the phosphate crevice of aspartate carbamoyltransferase, consistent with the reduced ability of metal nucleotides to compete with carbamoyl phosphate for the active site. However, a single Gd3+ ion binds in the region of the active site as evidenced by strong density. The binding of cations near the active site probably causes the inhibition of catalysis observed in kinetics experiments reported earlier [Honzatko, R.B., Lauritzen, A.M. & Lipscomb, W.N. (1981) Proc. Natl. Acad. Sci. USA 78, 898-902].
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BOCK R. M., LING N. S., MORELL S. A., LIPTON S. H. Ultraviolet absorption spectra of adenosine-5'-triphosphate and related 5'-ribonucleotides. Arch Biochem Biophys. 1956 Jun;62(2):253–264. doi: 10.1016/0003-9861(56)90123-0. [DOI] [PubMed] [Google Scholar]
- GERHART J. C., PARDEE A. B. The enzymology of control by feedback inhibition. J Biol Chem. 1962 Mar;237:891–896. [PubMed] [Google Scholar]
- Gerhart J. C., Holoubek H. The purification of aspartate transcarbamylase of Escherichia coli and separation of its protein subunits. J Biol Chem. 1967 Jun 25;242(12):2886–2892. [PubMed] [Google Scholar]
- Honzatko R. B., Crawford J. L., Monaco H. L., Ladner J. E., Ewards B. F., Evans D. R., Warren S. G., Wiley D. C., Ladner R. C., Lipscomb W. N. Crystal and molecular structures of native and CTP-liganded aspartate carbamoyltransferase from Escherichia coli. J Mol Biol. 1982 Sep 15;160(2):219–263. doi: 10.1016/0022-2836(82)90175-9. [DOI] [PubMed] [Google Scholar]
- Honzatko R. B., Lauritzen A. M., Lipscomb W. N. Metal cation influence on activity and regulation of aspartate carbamoyltransferase. Proc Natl Acad Sci U S A. 1981 Feb;78(2):898–902. doi: 10.1073/pnas.78.2.898. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Honzatko R. B., Lipscomb W. N. Interactions of phosphate ligands with Escherichia coli aspartate carbamoyltransferase in the crystalline state. J Mol Biol. 1982 Sep 15;160(2):265–286. doi: 10.1016/0022-2836(82)90176-0. [DOI] [PubMed] [Google Scholar]
- Neuhard J., Randerath E., Randerath K. Ion-exchange thin-layer chromatography. 13. Resolution of complex nucleoside triphosphate mixtures. Anal Biochem. 1965 Nov;13(2):211–222. doi: 10.1016/0003-2697(65)90191-0. [DOI] [PubMed] [Google Scholar]
- Wiley D. C., Evans D. R., Warren S. G., McMurray C. H., Edwards B. F., Franks W. A., Lipscomb W. N. The 5.5 Angstrom resolution structure of the regulatory enzyme, asparate transcarbamylase. Cold Spring Harb Symp Quant Biol. 1972;36:285–290. doi: 10.1101/sqb.1972.036.01.038. [DOI] [PubMed] [Google Scholar]
