Abstract
In order to understand why DNA and RNA have the 3'-5' and not the 2'-5' link and to delineate the stereochemistry of the 2'-5' phosphodiester links, we crystallized and carried out a very accurate x-ray diffraction analysis of A2 p5'C, an analog of A2' p5'A. Contrary to numerous reports in the literature that conclude that the tendency for 2'-5' nucleotides to stack intramolecularly is stronger than for 3'-5' counterparts, we find hardly any intramolecular base stacking for this molecule but find an intramolecular "stacking" of the ribose oxygen-4' of cytidine on top of the adenine ring. Although A2' p5'C shows the standard conformational features usually found for 3'-5' nucleotides, the overall stereochemistry of 2'-5' nucleotides is quite different because the 2' link orients the backbone inwards to the bases unlike the 3' and 5' links that orient it away from the bases. With the conformational features found for A2' p5'C, it is possible to build a very compact right-handed single-stranded helix but not a double helix. Such a preference for single-stranded helices may be the reason for the absence of 2'-5' bonds in DNA and RNA even though the 2'-5' bonds are formed more readily then 3'-5' bonds.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bugg C. E., Thomas J. M., Sundaralingam M., Rao S. T. Stereochemistry of nucleic acids and their constituents. X. Solid-state base-stacking patterns in nucleic acid constituents and polynucleotides. Biopolymers. 1971;10(1):175–219. doi: 10.1002/bip.360100113. [DOI] [PubMed] [Google Scholar]
- Camerman N., Fawcett J. K., Cameran A. Molecular structure of a deoxyribose-dinucleotide, sodium thymidylyl-(5' yields to 3')-thymidylate-(5') hydrate (pTpT), and a possible structural model for polythymidylate. J Mol Biol. 1976 Nov 15;107(4):601–621. doi: 10.1016/s0022-2836(76)80086-1. [DOI] [PubMed] [Google Scholar]
- Dhingra M. M., Sarma R. H. Why do nucleic acids have 3'5' phosphodiester bonds? Nature. 1978 Apr 27;272(5656):798–801. doi: 10.1038/272798a0. [DOI] [PubMed] [Google Scholar]
- Doornbos J., den Hartog J. A., van Boom J. H., Altona C. Conformational analysis of the nucleotides A2'-5'A, A2'-5'A2'-5'A and A2'-5'U from nuclear magnetic resonance and circular dichroism studies. Eur J Biochem. 1981 May 15;116(2):403–412. doi: 10.1111/j.1432-1033.1981.tb05349.x. [DOI] [PubMed] [Google Scholar]
- Einspahr H., Cook W. J., Bugg C. E. Conformational flexibility in single-stranded oligonucleotides: crystal structure of a hydrated calcium salt of adenylyl-(3'--5')-adenosine. Biochemistry. 1981 Sep 29;20(20):5788–5794. doi: 10.1021/bi00523a022. [DOI] [PubMed] [Google Scholar]
- KARTHA G., PARTHASARATHY R. COMBINATION OF MULTIPLE ISOMORPHOUS REPLACEMENT AND ANOMALOUS DISPERSION DATA FOR PROTEIN STRUCTURE DETERMINATION. I. DETERMINATION OF HEAVY-ATOM POSITIONS IN PROTEIN DERIVATIVES. Acta Crystallogr. 1965 Apr 10;18:745–749. doi: 10.1107/s0365110x65001718. [DOI] [PubMed] [Google Scholar]
- Kerr I. M., Brown R. E., Ball L. A. Increased sensitivity of cell-free protein synthesis to double-stranded RNA after interferon treatment. Nature. 1974 Jul 5;250(461):57–59. doi: 10.1038/250057a0. [DOI] [PubMed] [Google Scholar]
- Kerr I. M., Brown R. E. pppA2'p5'A2'p5'A: an inhibitor of protein synthesis synthesized with an enzyme fraction from interferon-treated cells. Proc Natl Acad Sci U S A. 1978 Jan;75(1):256–260. doi: 10.1073/pnas.75.1.256. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lebleu B., Sen G. C., Shaila S., Cabrer B., Lengyel P. Interferon, double-stranded RNA, and protein phosphorylation. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3107–3111. doi: 10.1073/pnas.73.9.3107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rapaport E., Zamecnik P. C. Presence of diadenosine 5',5''' -P1, P4-tetraphosphate (Ap4A) in mamalian cells in levels varying widely with proliferative activity of the tissue: a possible positive "pleiotypic activator". Proc Natl Acad Sci U S A. 1976 Nov;73(11):3984–3988. doi: 10.1073/pnas.73.11.3984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenberg J. M., Seeman N. C., Day R. O., Rich A. RNA double-helical fragments at atomic resolution. II. The crystal structure of sodium guanylyl-3',5'-cytidine nonahydrate. J Mol Biol. 1976 Jun 14;104(1):145–167. doi: 10.1016/0022-2836(76)90006-1. [DOI] [PubMed] [Google Scholar]
- Rubin J., Brennan T., Sundaralingam M. Crystal and molecular structure of a naturally occurring dinucleoside monophosphate. Uridylyl-(3'-5')-adenosine hemihydrate. Conformational "rigidity" of the nucleotide unit and models for polynucleotide chain folding. Biochemistry. 1972 Aug 1;11(16):3112–3128. doi: 10.1021/bi00766a027. [DOI] [PubMed] [Google Scholar]
- Sawai H. Catalysis of internucleotide bond formation by divalent metal ions. J Am Chem Soc. 1976 Oct 27;98(22):7037–7039. doi: 10.1021/ja00438a050. [DOI] [PubMed] [Google Scholar]
- Seeman N. C., Rosenberg J. M., Suddath F. L., Kim J. J., Rich A. RNA double-helical fragments at atomic resolution. I. The crystal and molecular structure of sodium adenylyl-3',5'-uridine hexahydrate. J Mol Biol. 1976 Jun 14;104(1):109–144. doi: 10.1016/0022-2836(76)90005-x. [DOI] [PubMed] [Google Scholar]
- Sen G. C., Lebleu B., Brown G. E., Kawakita M., Slattery E., Lengyel P. Interferon, double-stranded RNA and mRNA degradation. Nature. 1976 Nov 25;264(5584):370–373. doi: 10.1038/264370a0. [DOI] [PubMed] [Google Scholar]
- Shefter E., Barlow M., Sparks R. A., Trueblood K. N. The crystal and molecular structure of a dinucleoside phosphate: beta-adenosine-2'-beta-uridine-5'-phosphoric acid. Acta Crystallogr B. 1969 May 15;25(5):895–908. doi: 10.1107/s0567740869003190. [DOI] [PubMed] [Google Scholar]
- Wang A. H., Quigley G. J., Kolpak F. J., Crawford J. L., van Boom J. H., van der Marel G., Rich A. Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature. 1979 Dec 13;282(5740):680–686. doi: 10.1038/282680a0. [DOI] [PubMed] [Google Scholar]
