Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Dec;79(23):7595–7597. doi: 10.1073/pnas.79.23.7595

Biochemical studies of taste sensation: monoclonal antibody against L-alanine binding activity of catfish taste epithelium.

N I Goldstein, R H Cagan
PMCID: PMC347387  PMID: 6961436

Abstract

The L-alanine taste receptors of the channel catfish Ictalurus punctatus provide a useful biochemical model for studying taste receptor mechanisms. Mouse hybridomas that synthesize monoclonal antibodies have been produced. The antigen used to activate mouse spleen cells was the plasma membrane fraction obtained from the taste receptor-containing epithelium of the channel catfish. The spleen cells were fused with myeloma cells, Sp2/0-Ag14, to form hybridomas. To demonstrate inhibition of ligand binding by the product of these hybridomas, a catfish membrane fraction (fraction P2) was incubated with the antibody-containing preparation prior to assaying for L-[3H]alanine binding activity. We thereby demonstrated inhibition of binding of the taste ligand L-alanine to fraction P2. This approach should prove useful in further studies of receptor binding and transduction events in taste receptors.

Full text

PDF
7595

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cagan R. H. Biochemical studies of taste sensation. VII. Enhancement of taste stimulus binding to a catfish taste receptor preparation by prior exposure to the stimulus. J Neurobiol. 1979 May;10(3):207–220. doi: 10.1002/neu.480100302. [DOI] [PubMed] [Google Scholar]
  2. Cagan R. H., Morris R. W. Biochemical studies of taste sensation: binding to taste tissue of 3H-labeled monellin, a sweet-tasting protein. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1692–1696. doi: 10.1073/pnas.76.4.1692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fraser C. M., Venter J. C. Monoclonal antibodies to beta-adrenergic receptors: use in purification and molecular characterization of beta receptors. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7034–7038. doi: 10.1073/pnas.77.12.7034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kennett R. H., Denis K. A., Tung A. S., Klinman N. R. Hybrid plasmacytoma production: fusions with adult spleen cells, monoclonal spleen fragments, neonatal spleen cells and human spleen cells. Curr Top Microbiol Immunol. 1978;81:77–91. doi: 10.1007/978-3-642-67448-8_13. [DOI] [PubMed] [Google Scholar]
  5. Kennett R. H. Hybridomas: a new dimension in biological analyses. In Vitro. 1981 Dec;17(12):1036–1050. doi: 10.1007/BF02618601. [DOI] [PubMed] [Google Scholar]
  6. Krueger J. M., Cagan R. H. Biochemical studies of tast sensation. Binding of L-[3H]alanine to a sedimentable fraction from catfish barbel epithelium. J Biol Chem. 1976 Jan 10;251(1):88–97. [PubMed] [Google Scholar]
  7. Köhler G., Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975 Aug 7;256(5517):495–497. doi: 10.1038/256495a0. [DOI] [PubMed] [Google Scholar]
  8. Köhler G., Milstein C. Derivation of specific antibody-producing tissue culture and tumor lines by cell fusion. Eur J Immunol. 1976 Jul;6(7):511–519. doi: 10.1002/eji.1830060713. [DOI] [PubMed] [Google Scholar]
  9. LITTLEFIELD J. W. SELECTION OF HYBRIDS FROM MATINGS OF FIBROBLASTS IN VITRO AND THEIR PRESUMED RECOMBINANTS. Science. 1964 Aug 14;145(3633):709–710. doi: 10.1126/science.145.3633.709. [DOI] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. Manson L. A., Verastegui-Cerdan E., Sporer R. A quantitative disc radioimmunoassay for antibodies directed against membrane-associated antigens. Curr Top Microbiol Immunol. 1978;81:232–234. doi: 10.1007/978-3-642-67448-8_38. [DOI] [PubMed] [Google Scholar]
  12. Shulman M., Wilde C. D., Köhler G. A better cell line for making hybridomas secreting specific antibodies. Nature. 1978 Nov 16;276(5685):269–270. doi: 10.1038/276269a0. [DOI] [PubMed] [Google Scholar]
  13. Torii K., Cagan R. H. Biochemical studies of taste sensation. IX. Enhancement of L-[3H]glutamate binding to bovine taste papillae by 5'-ribonucleotides. Biochim Biophys Acta. 1980 Feb 7;627(3):313–323. [PubMed] [Google Scholar]
  14. Tzartos S. J., Lindstrom J. M. Monoclonal antibodies used to probe acetylcholine receptor structure: localization of the main immunogenic region and detection of similarities between subunits. Proc Natl Acad Sci U S A. 1980 Feb;77(2):755–759. doi: 10.1073/pnas.77.2.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Yelton D. E., Scharff M. D. Monoclonal antibodies: a powerful new tool in biology and medicine. Annu Rev Biochem. 1981;50:657–680. doi: 10.1146/annurev.bi.50.070181.003301. [DOI] [PubMed] [Google Scholar]
  16. Zelson P. R., Cagan R. H. Biochemical studies of taste sensation--VIII. Partial characterization of alanine-binding taste receptor sites of catfish Ictalurus punctatus using mercurials, sulfhydryl reagents, trypsin and phospholipase C. Comp Biochem Physiol B. 1979;64(2):141–147. doi: 10.1016/0305-0491(79)90152-4. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES