Abstract
We have developed an essential fatty acid-deficient cell line from a parental cell line, HSDM1C1, which metabolizes arachidonic acid to prostaglandin E2 (PGE2). This cell line, designated EFD-1, is depleted of arachidonate, is unable to synthesize PGE2 in response to bradykinin, and has changes in fatty acid composition characteristic of tissues from animals with essential fatty acid deficiency. Within 15 min of repletion by arachidonate, the ability to synthesize PGE2 is restored. Linoleate also is able to restore PGE2 synthesis, indicating that deficient cells contain both the rate-limiting delta 6 desaturase enzyme and the delta 5 desaturase enzyme, which are required to form arachidonate. When parental cells are incubated in lipid-free medium, there is rapid induction of the ability to convert linoleate to arachidonate. Arachidonate prevents this induction, suggesting that icosanoid precursor availability controls the rate of arachidonate formation.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- AMES B. N., DUBIN D. T. The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. J Biol Chem. 1960 Mar;235:769–775. [PubMed] [Google Scholar]
- Albutt E. C. A study of serum lipoproteins. J Med Lab Technol. 1966 Apr;23(2):61–82. [PubMed] [Google Scholar]
- Bailey J. M., Dunbar L. M. Essential fatty acid requirements of cells in tissue culture: a review. Exp Mol Pathol. 1973 Apr;18(2):142–161. doi: 10.1016/0014-4800(73)90013-0. [DOI] [PubMed] [Google Scholar]
- Bailey J. M., Howard B. V., Dunbar L. M., Tillman S. F. Control of lipid metabolism in cultured cells. Lipids. 1972 Feb;7(2):125–134. doi: 10.1007/BF02532600. [DOI] [PubMed] [Google Scholar]
- Brenner R. R. The oxidative desaturation of unsaturated fatty acids in animals. Mol Cell Biochem. 1974 Mar 8;3(1):41–52. doi: 10.1007/BF01660076. [DOI] [PubMed] [Google Scholar]
- Castuma J. C., Catala A., Brenner R. R. Oxidative desaturation of eicosa-8,11-dienoic acid to eicosa-5,8,11-trienoic acid: comparison of different diets on oxidative desaturation at the 5,6 and 6,7 positions. J Lipid Res. 1972 Nov;13(6):783–789. [PubMed] [Google Scholar]
- Cohen P., Broekman M. J., Verkley A., Lisman J. W., Derksen A. Quantification of human platelet inositides and the influence of ionic environment on their incorporation of orthophosphate-32P. J Clin Invest. 1971 Apr;50(4):762–772. doi: 10.1172/JCI106547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Corey E. J., Niwa H., Falck J. R., Mioskowski C., Arai Y., Marfat A. Recent studies on the chemical synthesis of eicosanoids. Adv Prostaglandin Thromboxane Res. 1980;6:19–25. [PubMed] [Google Scholar]
- Ferguson K. A., Glaser M., Bayer W. H., Vagelos P. R. Alteration of fatty acid composition of LM cells by lipid supplementation and temperature. Biochemistry. 1975 Jan 14;14(1):146–151. doi: 10.1021/bi00672a025. [DOI] [PubMed] [Google Scholar]
- Hill E. G., Johnson S. B., Lawson L. D., Mahfouz M. M., Holman R. T. Perturbation of the metabolism of essential fatty acids by dietary partially hydrogenated vegetable oil. Proc Natl Acad Sci U S A. 1982 Feb;79(4):953–957. doi: 10.1073/pnas.79.4.953. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hyman B. T., Stoll L. L., Spector A. A. Accumulation of (n-9)-eicosatrienoic acid in confluent 3T3-L1 and 3T3 cells. J Biol Chem. 1981 Sep 10;256(17):8863–8866. [PubMed] [Google Scholar]
- Jeffcoat R., James A. T. Interrelationship between the dietary regulation of fatty acid synthesis and the fatty acyl-CoA desaturases. Lipids. 1977 Jun;12(6):469–474. doi: 10.1007/BF02535444. [DOI] [PubMed] [Google Scholar]
- Kagawa Y., Takaoka T., Katsuta H. Absence of essential fatty acids in mammalian cell strains cultured in lipid-and protein-free chemically defined synthetic media. J Biochem. 1970 Jul;68(1):133–136. [PubMed] [Google Scholar]
- Levine L., Hinkle P. M., Voelkel E. F., Tashjian A. H., Jr Prostaglandin production by mouse fibrosarcoma cells in culture: inhibition by indomethacin and aspirin. Biochem Biophys Res Commun. 1972 May 26;47(4):888–896. doi: 10.1016/0006-291x(72)90576-1. [DOI] [PubMed] [Google Scholar]
- MOHRHAUER H., HOLMAN R. T. THE EFFECT OF DOSE LEVEL OF ESSENTIAL FATTY ACIDS UPON FATTY ACID COMPOSITION OF THE RAT LIVER. J Lipid Res. 1963 Apr;4:151–159. [PubMed] [Google Scholar]
- MORRISON W. R., SMITH L. M. PREPARATION OF FATTY ACID METHYL ESTERS AND DIMETHYLACETALS FROM LIPIDS WITH BORON FLUORIDE--METHANOL. J Lipid Res. 1964 Oct;5:600–608. [PubMed] [Google Scholar]
- Mathers L., Bailey M. J. Enzyme deletions and essential fatty acid metabolism in cultured cells. J Biol Chem. 1975 Feb 10;250(3):1152–1153. [PubMed] [Google Scholar]
- Prescott S. M., Majerus P. W. The fatty acid composition of phosphatidylinositol from thrombin-stimulated human platelets. J Biol Chem. 1981 Jan 25;256(2):579–582. [PubMed] [Google Scholar]
- Schremmer J. M., Blank M. L., Wykle R. L. Bradykinin-stimulated release of [3H]arachidonic acid from phospholipids of HSDM1C1 cells: comparison of diacyl phospholipids and plasmalogens as sources of prostaglandin precursors. Prostaglandins. 1979 Oct;18(4):491–505. doi: 10.1016/0090-6980(79)90018-2. [DOI] [PubMed] [Google Scholar]
- Vincent J. E., Zijlstra F. J. Formation by phospholipase A2 of prostaglandins and endoperoxides in platelets of normal and essential fatty acid-deficient rats. Adv Prostaglandin Thromboxane Res. 1978;3:143–146. [PubMed] [Google Scholar]