Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Dec;79(24):7684–7688. doi: 10.1073/pnas.79.24.7684

Collagen structural microheterogeneity and a possible role for glycosylated hydroxylysine in type I collagen

Mitsuo Yamauchi *,, Claudia Noyes *,, Yoshinori Kuboki *,, Gerald L Mechanic *,§,
PMCID: PMC347412  PMID: 6961443

Abstract

A three-chained peptide from type I collagen, crosslinked by hydroxyaldolhistidine, has been isolated from a tryptic digest of 5 M guanidine·HCl-insoluble bovine skin collagen (a small but as yet unknown percentage of the total collagen in whole skin). OsO4/NaIO4 specifically cleaved the crosslink at its double bond into a two-chained crosslink peptide and a single peptide. The sequence of the two-chained peptide containing the bifunctional crosslink was determined after amino acid analysis of the separated peptides. The crosslink consists of an aldehyde derived from hydroxylysine-87 in the aldehyde-containing cyanogen bromide fragment α1CB5ald and an aldehyde derived from the lysine in the COOH-terminal nonhelical region of the α1CB6ald fragment. The α1CB6ald portion of the peptide exhibited structural microheterogeneity, containing the inverted sequence Ala-Lys-His instead of the normal sequence Lys-Ala-His. This indicates that another structural gene exists for α1(I) chain. The original three-chained peptide did not contain any glycosylated hydroxylysine or glycosylated hydroxyaldolhistidine. The lack of glycosylation of hydroxylysine-87 in α1CB5, which is usually glycosylated, allowed formation of the aldehyde, and this, coupled with the sequence inversion, may have allowed formation of the nonreducible crosslink hydroxyaldolhistidine. We suggest that the role of glycosylation, a posttranslational modification, of specific hydroxylysine residues is to prevent their oxidative deamination to aldehydes, thereby precluding formation of complex stable crosslinks. Complex crosslinks would decrease the rate of collagen turnover. The decrease, with time, would increase the population of stable crosslinked collagen molecules, which would eventually accumulate with age.

Keywords: nonreducible stable crosslinks, hydroxyaldolhistidine, specific cleavage, molecular location

Full text

PDF
7684

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becker U., Timpl R., Kühn K. Carboxyterminal antigenic determinants of collagen from calf skin. Localization within discrete regions of the nonhelical sequence. Eur J Biochem. 1972 Jul 13;28(2):221–231. doi: 10.1111/j.1432-1033.1972.tb01905.x. [DOI] [PubMed] [Google Scholar]
  2. Bernstein P. H., Mechanic G. L. A natural histidine-based imminium cross-link in collagen and its location. J Biol Chem. 1980 Nov 10;255(21):10414–10422. [PubMed] [Google Scholar]
  3. Butler W. T. Chemical studies on the cyanogen bromide peptides of rat skin collagen. The covalent structure of alpha 1-CB5, the major hexose-containing cyanogen bromide peptide of alpha 1. Biochemistry. 1970 Jan 6;9(1):44–50. doi: 10.1021/bi00803a006. [DOI] [PubMed] [Google Scholar]
  4. Eyre D. R., Glimcher M. J. Analysis of a crosslinked peptide from calf bone collagen: evidence that hydroxylysyl glycoside participates in the crosslink. Biochem Biophys Res Commun. 1973 May 15;52(2):663–671. doi: 10.1016/0006-291x(73)90764-x. [DOI] [PubMed] [Google Scholar]
  5. Eyre D. R., Glimcher M. J. Collagen cross-linking. Isolation of cross-linked peptides from collagen of chicken bone. Biochem J. 1973 Nov;135(3):393–403. doi: 10.1042/bj1350393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fietzek P. P., Kühn K. The primary structure of collagen. Int Rev Connect Tissue Res. 1976;7:1–60. doi: 10.1016/b978-0-12-363707-9.50007-1. [DOI] [PubMed] [Google Scholar]
  7. Franzblau C., Kang A. H., Faris B. In vitro formation of intermolecular crosslinks in chick skin collagen. II. Kinetics. Biochem Biophys Res Commun. 1970 Jul 27;40(2):437–444. doi: 10.1016/0006-291x(70)91028-4. [DOI] [PubMed] [Google Scholar]
  8. Fukae M., Mechanic G. L. Maturation of collagenous tissue. Temporal sequence of formation of peptidyl lysine-derived cross-linking aldehydes and cross-links in collagen. J Biol Chem. 1980 Jul 10;255(13):6511–6518. [PubMed] [Google Scholar]
  9. Fuller F., Boedtker H. Sequence determination and analysis of the 3' region of chicken pro-alpha 1(I) and pro-alpha 2(I) collagen messenger ribonucleic acids including the carboxy-terminal propeptide sequences. Biochemistry. 1981 Feb 17;20(4):996–1006. doi: 10.1021/bi00507a054. [DOI] [PubMed] [Google Scholar]
  10. Gallop P. M., Blumenfeld O. O., Seifter S. Structure and metabolism of connective 801 tissue proteins. Annu Rev Biochem. 1972;41:617–672. doi: 10.1146/annurev.bi.41.070172.003153. [DOI] [PubMed] [Google Scholar]
  11. Housley T., Tanzer M. L., Henson E., Gallop P. M. Collagen crosslinking: isolation of hydroxyaldol-histidine, a naturally-occurring crosslink. Biochem Biophys Res Commun. 1975 Nov 17;67(2):824–830. doi: 10.1016/0006-291x(75)90887-6. [DOI] [PubMed] [Google Scholar]
  12. Jany K. D., Keil W., Meyer H., Kiltz H. H. Preparation of a highly purified bovine trypsin for use in protein sequence analysis. Biochim Biophys Acta. 1976 Nov 26;453(1):62–66. doi: 10.1016/0005-2795(76)90250-6. [DOI] [PubMed] [Google Scholar]
  13. Kuboki Y., Mechanic G. L. Comparative molecular distribution of cross-link in bone and dentin collagen. Structure-function relationships. Calcif Tissue Int. 1982 May;34(3):306–308. doi: 10.1007/BF02411256. [DOI] [PubMed] [Google Scholar]
  14. Kuboki Y., Mechanic G. L. The distribution of delta, delta'-dihydroxylysinonorleucine in bovine tendon and dentin. Connect Tissue Res. 1974;2(3):223–230. doi: 10.3109/03008207409152247. [DOI] [PubMed] [Google Scholar]
  15. Kuboki Y., Takagi T., Shimokawa H., Oguchi H., Sasaki S., Mechanic G. L. Location of an intermolecular crosslink in bovine bone collagen. Connect Tissue Res. 1981;9(2):107–114. doi: 10.3109/03008208109160248. [DOI] [PubMed] [Google Scholar]
  16. Kuboki Y., Tsuzaki M., Sasaki S., Liu C. F., Mechanic G. L. Location of the intermolecular cross-links in bovine dentin collagen, solubilization with trypsin and isolation of cross-link peptides containing dihydroxylysinonorleucine and pyridinoline. Biochem Biophys Res Commun. 1981 Sep 16;102(1):119–126. doi: 10.1016/0006-291x(81)91497-2. [DOI] [PubMed] [Google Scholar]
  17. Mechanic G., Gallop P. M., Tanzer M. L. The nature of crosslinking in collagens from mineralized tissues. Biochem Biophys Res Commun. 1971 Nov 5;45(3):644–653. doi: 10.1016/0006-291x(71)90465-7. [DOI] [PubMed] [Google Scholar]
  18. Mechanic G., Tanzer M. L. Biochemistry of collagen crosslinking. Isolation of a new crosslink, hydroxylysinohydroxynorleucine, and its reduced precursor, dihydroxynorleucine, from bovine tendon. Biochem Biophys Res Commun. 1970 Dec 24;41(6):1597–1604. doi: 10.1016/0006-291x(70)90571-1. [DOI] [PubMed] [Google Scholar]
  19. Morgan P. H., Jacobs H. G., Segrest J. P., Cunningham L. W. A comparative study of glycopeptides derived from selected vertebrate collagens. A possible role of the carbohydrate in fibril formation. J Biol Chem. 1970 Oct 10;245(19):5042–5048. [PubMed] [Google Scholar]
  20. Moroder L., Hallett A., Wünsch E., Keller O., Wersin G. Di-tert.-butyldicarbonat--ein vorteilhaftes Reagenz zur Eingührung der tert.-Butyloxycarbonyl-Schutzgruppe. Hoppe Seylers Z Physiol Chem. 1976 Nov;357(11):1651–1653. [PubMed] [Google Scholar]
  21. Rauterberg J., Fietzek P., Rexrodt F., Becker U., Stark M., Kühn K. The amino acid sequence of the carboxyterminal nonhelical cross link region of the alpha 1 chain of calf skin collagen. FEBS Lett. 1972 Mar;21(1):75–79. doi: 10.1016/0014-5793(72)80167-4. [DOI] [PubMed] [Google Scholar]
  22. Robins S. P., Bailey A. J. The chemistry of the collagen cross-links. Characterization of the products of reduction of skin, tendon and bone with sodium cyanoborohydride. Biochem J. 1977 May 1;163(2):339–346. doi: 10.1042/bj1630339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Robins S. P., Bailey A. J. The chemistry of the collagen cross-links. The characterization of fraction C, a possible artifact produced during the reduction of collagen fibres with borohydride. Biochem J. 1973 Dec;135(4):657–665. doi: 10.1042/bj1350657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Siegel R. C. Collagen cross-linking. Synthesis of collagen cross-links in vitro with highly purified lysyl oxidase. J Biol Chem. 1976 Sep 25;251(18):5786–5792. [PubMed] [Google Scholar]
  25. Tanzer M. L., Housley T., Berube L., Fairweather R., Franzblau C., Gallop P. M. Structure of two histidine-containing crosslinks from collagen. J Biol Chem. 1973 Jan 25;248(2):393–402. [PubMed] [Google Scholar]
  26. Tanzer M. L. Intermolecular cross-links in reconstituted collagen fibrils. Evidence for the nature of the covalent bonds. J Biol Chem. 1968 Aug 10;243(15):4045–4054. [PubMed] [Google Scholar]
  27. Tanzer M. L., Mechanic G. Isolation of lysinonorleucine from collagen. Biochem Biophys Res Commun. 1970 Apr 8;39(1):183–189. doi: 10.1016/0006-291x(70)90775-8. [DOI] [PubMed] [Google Scholar]
  28. Tarr G. E., Beecher J. F., Bell M., McKean D. J. Polyquarternary amines prevent peptide loss from sequenators. Anal Biochem. 1978 Feb;84(2):622–7?0=ENG. doi: 10.1016/0003-2697(78)90086-6. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES