Abstract
An alternative to bone grafting is engineered osteo-conductive material that carries osteo-progenitor cells with osteo-stimulant factors impregnated on a malleable osteo-conductive material. We used bone marrow stem cells as the source of osteo-progenitor cells and stimulated them with prostaglandin E2 using demineralised bone matrix as a carrier. We treated 35 skeletally mature male Wistar albino rats with segmentary radial bone defects using five different treatment groups. Group I received no treatment; the remaining four groups all received a mixture of bone marrow and demineralised bone matrix. In group III, a copolymer was added. In group IV, prostaglandin E2 and in group V prostaglandin E2 within a copolymer was added to the mixture. Eight weeks after the surgical procedure, the rats were sacrificed. Radiological and histological evaluation of the radial bone showed that while there was no significant healing in groups I, II and III, there was a significant healing response in groups IV and V.
Résumé
Une alternative à la greffe osseuse est un matériel ostéoconducteur portant des cellules précurseurs avec des facteurs ostéostimulant imprégnés dans un matériel malléable ostéoconducteur. Nous avons utilisé des cellules de la moelle osseuse comme source de cellules précurseurs et les avons stimulés avec une prostaglandine E2 qui utilise la matrice osseuse déminéralisée comme porteur. Nous avons traité 35 rats Wistar albinos viril à maturation osseuse, avec un défaut segmentaire du radius, en utilisant cinq groupes de traitements différents. Le groupe I n’a reçu aucun traitement. Les quatre autres groupes ont reçu un mélange de moelle osseuse et une matrice d’os déminéralisé. Dans le groupe III a été ajouté un copolymère. Dans le groupe IV, une prostaglandine E2 et dans le groupe V, une prostaglandine E2 et un copolymère ont été ajouté au mélange. Huit semaines après la procédure chirurgicale, les rats ont été tués. L’évaluation radiologique et histologique de l’os radial a montré qu’il n’y avait aucune guérison notable dans les groupes I, II et III, mais une réponse curative appréciable dans les groupes IV et V.
Full Text
The Full Text of this article is available as a PDF (286.9 KB).
Acknowledgements
This study was supported by the Gazi University’s Research Fund.
References
- 1.Bauer TW, Muschler GF. Bone graft materials. An overview of the basic science. Clin Orthop. 2000;371:10–27. doi: 10.1097/00003086-200002000-00003. [DOI] [PubMed] [Google Scholar]
- 2.Bingel SA. Euthanasia and necropsy. In: An YH, Friedman RJ, editors. Animal models in orthopaedic research. Boca Raton: CRC Press; 1999. pp. 71–81. [Google Scholar]
- 3.Burchardt H. Biology of bone transplantation. Orthop Clin North Am. 1987;18:187–196. [PubMed] [Google Scholar]
- 4.Burwell RG. Studies in the transplantation of bone. VII. The fresh composite homograft–autograft of cancellous bone an analysis of factors leading to osteogenesis in marrow-containing bone grafts. J Bone Joint Surg. 1964;46(B):110–140. [PubMed] [Google Scholar]
- 5.Connolly JF, Guse R, Tiedeman J, Dehne R. Autologous marrow injection as a substitute for operative grafting of tibial nonunions. Clin Orthop. 1991;266:259–270. [PubMed] [Google Scholar]
- 6.Cook SD, Baffes GC, Wolfe MW, Sampath TK, Rueger DC. Recombinant human bone morphogenetic protein-7 induces healing in a canine long-bone segmental defect model. Clin Orthop. 1994;301:302–312. [PubMed] [Google Scholar]
- 7.Ekholm M, Hietanen J, Lindqvist C, Rautavuori J, Santavirta S, Suuronen R. Histological study of tissue reactions to epsilon-caprolactone-lactide copolymer in paste form. Biomaterials. 1999;20:1257–1262. doi: 10.1016/s0142-9612(97)00080-x. [DOI] [PubMed] [Google Scholar]
- 8.Farso-Nielsen F, Karring T, Gogolewski S. Biodegradable guide for bone regeneration. Polyurethane membranes tested in rabbit radius defects. Acta Orthop Scand. 1992;63:66–69. doi: 10.3109/17453679209154853. [DOI] [PubMed] [Google Scholar]
- 9.Flanagan AM, Chambers TJ. Stimulation of bone nodule formation in vitro by prostaglandins E1 and E2. Endocrinology. 1992;130:443–448. doi: 10.1210/endo.130.1.1309342. [DOI] [PubMed] [Google Scholar]
- 10.Fleming JE, Cornell CN, Muschler GF. Bone cells and matrices in orthopedic tissue engineering. Orthop Clin North Am. 2000;31:357–374. doi: 10.1016/s0030-5898(05)70156-5. [DOI] [PubMed] [Google Scholar]
- 11.Gepstein R, Weiss RE, Hallel T. Bridging large defects in bone by demineralized bone matrix in the form of a powder. A radiographic, histological, and radioisotope-uptake study in rats. J Bone Joint Surg. 1987;69(A):984–992. [PubMed] [Google Scholar]
- 12.Goshima J, Goldberg VM, Caplan AI. The osteogenic potential of culture-expanded rat marrow mesenchymal cells assayed in vivo in calcium phosphate ceramic blocks. Clin Orthop. 1991;262:298–311. [PubMed] [Google Scholar]
- 13.Gruber HE, Stasky AA. Histologic study in orthopaedic animal research. In: An YH, Friedman RJ, editors. Animal models in orthopaedic research. Boca Raton: CRC Press; 1999. pp. 115–137. [Google Scholar]
- 14.Kokubu T, Matsui N, Fujioka H, Tsunoda M, Mizuno K. Low intensity pulsed ultrasound exposure increases prostaglandin E2 production via the induction of cyclooxygenase-2 mRNA in mouse osteoblasts. Biochem Biophys Res Commun. 1999;256:284–287. doi: 10.1006/bbrc.1999.0318. [DOI] [PubMed] [Google Scholar]
- 15.Lane JM, Sandhu HS. Current approaches to experimental bone grafting. Orthop Clin North Am. 1987;18:213–225. [PubMed] [Google Scholar]
- 16.Lindholm TS, Nilsson OS, Lindholm TC. Extraskeletal and intraskeletal new bone formation induced by demineralized bone matrix combined with bone marrow cells. Clin Orthop. 1982;171:251–255. [PubMed] [Google Scholar]
- 17.Nagata T, Kaho K, Nishikawa S, Shinohara H, Wakano Y, Ishida H. Effect of prostaglandin E2 on mineralization of bone nodules formed by fetal rat calvarial cells. Calcif Tissue Int. 1994;55:451–457. doi: 10.1007/BF00298559. [DOI] [PubMed] [Google Scholar]
- 18.Narumiya S, Sugimoto Y, Ushikubi F. Prostanoid receptors: structures, properties, and functions. Physiol Rev. 1999;79:1193–1226. doi: 10.1152/physrev.1999.79.4.1193. [DOI] [PubMed] [Google Scholar]
- 19.Nunamaker DM. Experimental models of fracture repair. Clin Orthop. 1998;355(Suppl):S56–S65. doi: 10.1097/00003086-199810001-00007. [DOI] [PubMed] [Google Scholar]
- 20.Nyman R, Magnusson M, Sennerby L, Nyman S, Lundgren D. Membrane-guided bone regeneration. Segmental radius defects studied in the rabbit. Acta Orthop Scand. 1995;66:169–173. doi: 10.3109/17453679508995515. [DOI] [PubMed] [Google Scholar]
- 21.Solheim E, Pinholt EM, Andersen R, Bang G, Sudmann E. The effect of a composite of polyorthoester and demineralized bone on the healing of large segmental defects of the radius in rats. J Bone Joint Surg Am. 1992;74:1456–1463. [PubMed] [Google Scholar]
- 22.Tiedeman JJ, Connolly JF, Strates BS, Lippielo L. Treatment of nonunion by percutaneous injection of bone marrow and demineralized bone matrix. An experimental study in dogs. Clin Orthop. 1991;268:294–302. [PubMed] [Google Scholar]
- 23.Ural E, Kesenci K, Fambri L, Migliaresi C, Piskin E. Poly(d,l-lactide/epsilon-caprolactone)/hydroxyapatite composites. Biomaterials. 2000;21:2147–2154. doi: 10.1016/s0142-9612(00)00098-3. [DOI] [PubMed] [Google Scholar]
- 24.Weinreb M, Grosskopf A, Shir N. The anabolic effect of PGE2 in rat bone marrow cultures is mediated via the EP4 receptor subtype. Am J Physiol. 1999;276:E376–E383. doi: 10.1152/ajpendo.1999.276.2.E376. [DOI] [PubMed] [Google Scholar]
- 25.Wixson SK, Smiler KL. Anesthesia and analgesia in rodents. In: Kohn DF, Wixson SK, White WJ, Benson GJ, editors. Anesthesia and analgesia in laboratory animals. San Diego: Academic; 1998. pp. 173–184. [Google Scholar]