Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Dec;79(24):7904–7908. doi: 10.1073/pnas.79.24.7904

Radioimmunoassay for leukotriene B4

Robert A Lewis *, Jean-Michel Mencia-Huerta *, Roy J Soberman *, Dennis Hoover , Anthony Marfat , E J Corey , K Frank Austen *,
PMCID: PMC347458  PMID: 6296855

Abstract

A rabbit immunized with leukotriene B4 [LTB4; (5S,12R)-6, 14-cis-8, 10-trans-icosatetraenoic acid] coupled to bovine serum albumin via the 12-oxy function of the lipid produced antibodies having an average association constant (Ka) for [14,15-3H]LTB4 of 3.2 × 109 M-1 at 37°C and in a concentration of 0.37 μg/ml of the immune plasma. When 10 μl of anti-LTB4 and 3.9 nCi of [14,15-3H]LTB4 (28 Ci/mmol; 1 Ci = 3.7 × 1010 becquerels) were incubated in a volume of 250 μl, 50% inhibition of radioligand binding was achieved with 0.31 ng of LTB4 and with 1.95 ng of (5S,12S)-6-trans-8-cis-LTB4. The sulfidopeptide leukotrienes, LTC4 and LTD4, displaced the radioligand from this antibody with less than 1/100th the activity of LTB4, and the diastereoisomers of 6-trans-LTB4, 5-L-hydroxy-6-trans-8,11,14-cis-icosatetraenoic acid (5-HETE), and three prostaglandins were minimally effective. The specificity of this radioimmunoassay was further shown by assessment of the immunoreactive products generated from calcium ionophore (A23187)-activated rat serosal mast cells and human neutrophils after reversed-phase HPLC. Resolution of the supernatants from each cell type yielded a single immunoreactive peak that coeluted with synthetic LTB4 and quantitatively correlated with the physical measurement by integrated A269 in that peak; UV-absorbing peaks eluting at other retention times were not immunoreactive. The immunoreactive LTB4 generated averaged 4.6 ng per 106 rat mast cells and resolution of the supernatants by reversed-phase HPLC without a prior extraction step gave a recovery of 54%, validating the direct applicability of this sensitive and specific assay for LTB4, a highly potent chemotactic factor, to unfractionated biologic fluids.

Keywords: rat mast cell, human neutrophil, lipoxygenase, chemotactic factor

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  2. Borgeat P., Fruteau de Laclos B., Picard S., Drapeau J., Vallerand P., Corey E. J. Studies on the mechanism of formation of the 5S, 12S-dihydroxy-6,8,10,14(E,Z,E,Z)-icosatetraenoic acid in leukocytes. Prostaglandins. 1982 May;23(5):713–724. doi: 10.1016/s0090-6980(82)80009-9. [DOI] [PubMed] [Google Scholar]
  3. Borgeat P., Hamberg M., Samuelsson B. Transformation of arachidonic acid and homo-gamma-linolenic acid by rabbit polymorphonuclear leukocytes. Monohydroxy acids from novel lipoxygenases. J Biol Chem. 1976 Dec 25;251(24):7816–7820. [PubMed] [Google Scholar]
  4. Borgeat P., Samuelsson B. Arachidonic acid metabolism in polymorphonuclear leukocytes: effects of ionophore A23187. Proc Natl Acad Sci U S A. 1979 May;76(5):2148–2152. doi: 10.1073/pnas.76.5.2148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Borgeat P., Samuelsson B. Transformation of arachidonic acid by rabbit polymorphonuclear leukocytes. Formation of a novel dihydroxyeicosatetraenoic acid. J Biol Chem. 1979 Apr 25;254(8):2643–2646. [PubMed] [Google Scholar]
  6. Ford-Hutchinson A. W., Bray M. A., Cunningham F. M., Davidson E. M., Smith M. J. Isomers of leukotriene B4 possess different biological potencies. Prostaglandins. 1981 Jan;21(1):143–152. doi: 10.1016/0090-6980(81)90204-5. [DOI] [PubMed] [Google Scholar]
  7. Goetzl E. J., Pickett W. C. Novel structural determinants of the human neutrophil chemotactic activity of leukotriene B. J Exp Med. 1981 Feb 1;153(2):482–487. doi: 10.1084/jem.153.2.482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goetzl E. J., Pickett W. C. The human PMN leukocyte chemotactic activity of complex hydroxy-eicosatetraenoic acids (HETEs). J Immunol. 1980 Oct;125(4):1789–1791. [PubMed] [Google Scholar]
  9. Hansson G., Lindgren J. A., Dahlén S. E., Hedqvist P., Samuelsson B. Identification and biological activity of novel omega-oxidized metabolites of leukotriene B4 from human leukocytes. FEBS Lett. 1981 Jul 20;130(1):107–112. doi: 10.1016/0014-5793(81)80676-x. [DOI] [PubMed] [Google Scholar]
  10. Jörg A., Henderson W. R., Murphy R. C., Klebanoff S. J. Leukotriene generation by eosinophils. J Exp Med. 1982 Feb 1;155(2):390–402. doi: 10.1084/jem.155.2.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Klickstein L. B., Shapleigh C., Goetzl E. J. Lipoxygenation of arachidonic acid as a source of polymorphonuclear leukocyte chemotactic factors in synovial fluid and tissue in rheumatoid arthritis and spondyloarthritis. J Clin Invest. 1980 Nov;66(5):1166–1170. doi: 10.1172/JCI109947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lee C. W., Lewis R. A., Corey E. J., Barton A., Oh H., Tauber A. I., Austen K. F. Oxidative inactivation of leukotriene C4 by stimulated human polymorphonuclear leukocytes. Proc Natl Acad Sci U S A. 1982 Jul;79(13):4166–4170. doi: 10.1073/pnas.79.13.4166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Levine L., Morgan R. A., Lewis R. A., Austen K. F., Clark D. A., Marfat A., Corey E. J. Radioimmunoassay of the leukotrienes of slow reacting substance of anaphylaxis. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7692–7696. doi: 10.1073/pnas.78.12.7692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lewis R. A., Austen K. F., Drazen J. M., Clark D. A., Marfat A., Corey E. J. Slow reacting substances of anaphylaxis: identification of leukotrienes C-1 and D from human and rat sources. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3710–3714. doi: 10.1073/pnas.77.6.3710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lewis R. A., Austen K. F. Mediation of local homeostasis and inflammation by leukotrienes and other mast cell-dependent compounds. Nature. 1981 Sep 10;293(5828):103–108. doi: 10.1038/293103a0. [DOI] [PubMed] [Google Scholar]
  16. Lewis R. A., Drazen J. M., Austen K. F., Clark D. A., Corey E. J. Identification of the C(6)-S-conjugate of leukotriene A with cysteine as a naturally occurring slow reacting substance of anaphylaxis (SRS-A). Importance of the 11-cis-geometry for biological activity. Biochem Biophys Res Commun. 1980 Sep 16;96(1):271–277. doi: 10.1016/0006-291x(80)91210-3. [DOI] [PubMed] [Google Scholar]
  17. Lewis R. A., Goetzl E. J., Drazen J. M., Soter N. A., Austen K. F., Corey E. J. Functional characterization of synthetic leukotriene B and its stereochemical isomers. J Exp Med. 1981 Oct 1;154(4):1243–1248. doi: 10.1084/jem.154.4.1243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lewis R. A., Holgate S. T., Roberts L. J., 2nd, Maguire J. F., Oates J. A., Austen K. F. Effects of indomethacin on cyclic nucleotide levels and histamine release from rat serosal mast cells. J Immunol. 1979 Oct;123(4):1663–1668. [PubMed] [Google Scholar]
  19. Morris H. R., Taylor G. W., Piper P. J., Tippins J. R. Structure of slow-reacting substance of anaphylaxis from guinea-pig lung. Nature. 1980 May 8;285(5760):104–106. doi: 10.1038/285104a0. [DOI] [PubMed] [Google Scholar]
  20. Murphy R. C., Hammarström S., Samuelsson B. Leukotriene C: a slow-reacting substance from murine mastocytoma cells. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4275–4279. doi: 10.1073/pnas.76.9.4275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Murphy R. C., Pickett W. C., Culp B. R., Lands W. E. Tetraene and pentaene leukotrienes: selective production from murine mastocytoma cells after dietary manipulation. Prostaglandins. 1981 Oct;22(4):613–622. doi: 10.1016/0090-6980(81)90070-8. [DOI] [PubMed] [Google Scholar]
  22. Orning L., Hammarström S., Samuelsson B. Leukotriene D: a slow reacting substance from rat basophilic leukemia cells. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2014–2017. doi: 10.1073/pnas.77.4.2014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Razin E., Mencia-Huerta J. M., Lewis R. A., Corey E. J., Austen K. F. Generation of leukotriene C4 from a subclass of mast cells differentiated in vitro from mouse bone marrow. Proc Natl Acad Sci U S A. 1982 Aug;79(15):4665–4667. doi: 10.1073/pnas.79.15.4665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rådmark O., Malmsten C., Samuelsson B., Clark D. A., Goto G., Marfat A., Corey E. J. Leukotriene A: stereochemistry and enzymatic conversion to leukotriene B. Biochem Biophys Res Commun. 1980 Feb 12;92(3):954–961. doi: 10.1016/0006-291x(80)90795-0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES