Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Dec;79(24):7934–7938. doi: 10.1073/pnas.79.24.7934

cAMP-mediated decrease in K+ conductance evoked by serotonin and dopamine in the same neuron: a biochemical and physiological single-cell study.

P Deterre, D Paupardin-Tritsch, J Bockaert, H M Gerschenfeld
PMCID: PMC347464  PMID: 6296856

Abstract

The extracellular application of either serotonin or dopamine and the intracellular injection of cAMP all evoke in the same identified neurons of the snail Helix aspersa inward currents associated with a decrease in K+ conductance. The serotonin-, dopamine-, and cAMP-induced inward currents all show the same maximal amplitude. When the response to one transmitter is maximal, the response to the other is blocked. Using a single-cell microassay, we found that both serotonin and dopamine stimulate the adenylate cyclase [adenosine triphosphate pyrophosphate-lyase (cyclizing), EC 4.6.6.1] activity of the neurons giving the inward-current responses; on the other hand, the adenylate cyclase activity of a neuron that does not show the serotonin- and dopamine-induced currents was not stimulated by the transmitters. In contrast with the nonsummation of the maximal inward-current responses, the maximal stimulating effects of the transmitters on the enzyme activity are additive. The diterpene forskolin, which stimulates the adenylate cyclase activity of the single cells 9-fold, also evokes an inward current. We conclude that single snail neurons are endowed with independent serotonin and dopamine receptors linked to the adenylate cyclase. Activation of each of these receptors evokes a cAMP-mediated decrease in K+ conductance. The physiological interaction between the transmitters probably takes place at a late step in the chain of events leading from the increase in cAMP to the closing of the K+ channels.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams D. J., Smith S. J., Thompson S. H. Ionic currents in molluscan soma. Annu Rev Neurosci. 1980;3:141–167. doi: 10.1146/annurev.ne.03.030180.001041. [DOI] [PubMed] [Google Scholar]
  2. Ascher P. Inhibitory and excitatory effects of dopamine on Aplysia neurones. J Physiol. 1972 Aug;225(1):173–209. doi: 10.1113/jphysiol.1972.sp009933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Birnbaumer L., Rodbell M. Adenyl cyclase in fat cells. II. Hormone receptors. J Biol Chem. 1969 Jul 10;244(13):3477–3482. [PubMed] [Google Scholar]
  4. Bockaert J., Hunzicker-Dunn M., Birnbaumer L. Hormone-stimulated desensitization of hormone-dependent adenylyl cyclase. Dual action of luteninizing hormone on pig graafian follicle membranes. J Biol Chem. 1976 May 10;251(9):2653–2663. [PubMed] [Google Scholar]
  5. Castellucci V. F., Kandel E. R., Schwartz J. H., Wilson F. D., Nairn A. C., Greengard P. Intracellular injection of t he catalytic subunit of cyclic AMP-dependent protein kinase simulates facilitation of transmitter release underlying behavioral sensitization in Aplysia. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7492–7496. doi: 10.1073/pnas.77.12.7492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cedar H., Schwartz J. H. Cyclic adenosine monophosphate in the nervous system of Aplysia californica. II. Effect of serotonin and dopamine. J Gen Physiol. 1972 Nov;60(5):570–587. doi: 10.1085/jgp.60.5.570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Deterre P., Paupardin-Tritsch D., Bockaert J., Gerschenfeld H. M. Role of cyclic AMP in a serotonin-evoked slow inward current in snail neurones. Nature. 1981 Apr 30;290(5809):783–785. doi: 10.1038/290783a0. [DOI] [PubMed] [Google Scholar]
  8. Drummond A. H., Bucher F., Levitan I. B. d-[3H]Lysergic acid diethylamide binding to serotonin receptors in the molluscan nervous system. J Biol Chem. 1980 Jul 25;255(14):6679–6686. [PubMed] [Google Scholar]
  9. Enjalbert A., Hamon M., Bourgoin S., Bockaert J. Postsynaptic serotonin-sensitive adenylate cyclase in the central nervous system. II. Comparison with dopamine- and isoproterenol-sensitive adenylate cyclases in rat brain. Mol Pharmacol. 1978 Jan;14(1):11–23. [PubMed] [Google Scholar]
  10. Imbert M., Chabardès D., Montégut M., Clique A., Morel F. Adenylate cyclase activity along the rabbit nephron as measured in single isolated segments. Pflugers Arch. 1975;354(3):213–228. doi: 10.1007/BF00584645. [DOI] [PubMed] [Google Scholar]
  11. Kerkut G. A., Lambert J. D., Gayton R. J., Loker J. E., Walker R. J. Mapping of nerve cells in the suboesophageal ganglia of Helix aspersa. Comp Biochem Physiol A Comp Physiol. 1975 Jan 1;50(1A):1–25. doi: 10.1016/s0010-406x(75)80194-0. [DOI] [PubMed] [Google Scholar]
  12. Klein M., Kandel E. R. Mechanism of calcium current modulation underlying presynaptic facilitation and behavioral sensitization in Aplysia. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6912–6916. doi: 10.1073/pnas.77.11.6912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Klein M., Kandel E. R. Presynaptic modulation of voltage-dependent Ca2+ current: mechanism for behavioral sensitization in Aplysia californica. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3512–3516. doi: 10.1073/pnas.75.7.3512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lemos J. R., Novak-Hofer I., Levitan I. B. Serotonin alters the phosphorylation of specific proteins inside a single living nerve cell. Nature. 1982 Jul 1;298(5869):64–65. doi: 10.1038/298064a0. [DOI] [PubMed] [Google Scholar]
  15. Levitan I. B. Adenylate cyclase in isolated Helix and Aplysia neuronal cell bodies: stimulation by serotonin and peptide-containing extract. Brain Res. 1978 Oct 13;154(2):404–408. doi: 10.1016/0006-8993(78)90714-x. [DOI] [PubMed] [Google Scholar]
  16. Paupardin-Tritsch D., Deterre P., Gerschenfeld H. M. Relationship between two voltage-dependent serotonin responses of molluscan neurones. Brain Res. 1981 Jul 27;217(1):201–206. doi: 10.1016/0006-8993(81)90201-8. [DOI] [PubMed] [Google Scholar]
  17. Pellmar T. C. Does cyclic 3' ,5'-adenosine monophosphate act as second messenger in a voltage-dependent response to 5-hydroxytryptamine in Aplysia? Br J Pharmacol. 1981 Dec;74(4):747–756. doi: 10.1111/j.1476-5381.1981.tb10707.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pellmar T. C. Voltage-dependent current evoked by dopamine and octopamine in Aplysia. Brain Res. 1981 Nov 2;223(2):448–454. doi: 10.1016/0006-8993(81)91163-x. [DOI] [PubMed] [Google Scholar]
  19. Seamon K. B., Padgett W., Daly J. W. Forskolin: unique diterpene activator of adenylate cyclase in membranes and in intact cells. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3363–3367. doi: 10.1073/pnas.78.6.3363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Siegelbaum S. A., Camardo J. S., Kandel E. R. Serotonin and cyclic AMP close single K+ channels in Aplysia sensory neurones. Nature. 1982 Sep 30;299(5882):413–417. doi: 10.1038/299413a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES