Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1982 Aug;37(2):786–793. doi: 10.1128/iai.37.2.786-793.1982

Lymphokine-induced mycobacteriostatic activity in mouse pleural macrophages.

A Zlotnik, A J Crowle
PMCID: PMC347598  PMID: 6811440

Abstract

We have developed an in vitro assay to study the intramacrophage replication of Mycobacterium tuberculosis or Mycobacterium bovis BCG. In this assay, extracellular mycobacterial replication was avoided by using a small infecting inoculum and a new method for efficiently removing nonphagocytocytized bacilli. The ability of different mycobacterial strains to replicate in mouse pleural macrophages correlated with their virulence. The effect of lymphokines prepared by incubating spleen cells from BCG-immunized mice with mycobacterial antigens was tested with this assay. In the presence of lymphokines, mouse pleural macrophages were able to inhibit the intramacrophage replication of both BCG and M. tuberculosis. This assay is a useful in vitro model for studying antibacterial cellular immunity expressed by macrophages.

Full text

PDF
786

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson S. E., Bautista S., Remington J. S. Induction of resistance to Toxoplasma gondii in human macrophages by soluble lymphocyte products. J Immunol. 1976 Aug;117(2):381–387. [PubMed] [Google Scholar]
  2. Barksdale L., Kim K. S. Mycobacterium. Bacteriol Rev. 1977 Mar;41(1):217–372. doi: 10.1128/br.41.1.217-372.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Buchmüller Y., Mauel J. Inhibitors of serine-esterases enhance lymphokine-induced microbicidal activity in macrophages. J Reticuloendothel Soc. 1980 Jan;27(1):89–96. [PubMed] [Google Scholar]
  4. CROWLE A. J. Tubercle bacillary extracts immunogenic for mice. 2. Water-soluble proteinaceous extracts. Tubercle. 1961 Dec;42:479–486. doi: 10.1016/s0041-3879(61)80137-2. [DOI] [PubMed] [Google Scholar]
  5. Cahall D. L., Youmans G. P. Conditions for production, and some characteristics, of mycobacterial growth inhibitory factor produced by spleen cells from mice immunized with viable cells of the attenuated H37Ra strain of Mycobacterium tuberculosis. Infect Immun. 1975 Oct;12(4):833–840. doi: 10.1128/iai.12.4.833-840.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Crowle A. J., May M. A hanging drop macrophage function test. J Reticuloendothel Soc. 1978 Aug;24(2):169–185. [PubMed] [Google Scholar]
  7. Kishimoto R. A., White J. D., Shirey F. G., McGann V. G., Berendt R. F., Larson E. W., Hedlund K. W. In vitro responses of guinea pig peritoneal macrophages to Legionella pneumophila. Infect Immun. 1981 Mar;31(3):1209–1213. doi: 10.1128/iai.31.3.1209-1213.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. MACKANESS G. B. THE IMMUNOLOGICAL BASIS OF ACQUIRED CELLULAR RESISTANCE. J Exp Med. 1964 Jul 1;120:105–120. doi: 10.1084/jem.120.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Mackaness G. B. The influence of immunologically committed lymphoid cells on macrophage activity in vivo. J Exp Med. 1969 May 1;129(5):973–992. doi: 10.1084/jem.129.5.973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Nacy C. A., Diggs C. L. Intracellular replication of Leishmania tropica in mouse peritoneal macrophages: comparison of amastigote replication in adherent and nonadherent macrophages. Infect Immun. 1981 Oct;34(1):310–313. doi: 10.1128/iai.34.1.310-313.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nacy C. A., Meltzer M. S. Macrophages in resistance to rickettsial infection: macrophage activation in vitro for killing of Rickettsia tsutsugamushi. J Immunol. 1979 Dec;123(6):2544–2549. [PubMed] [Google Scholar]
  12. Nogueira N., Cohn Z. A. Trypanosoma cruzi: in vitro induction of macrophage microbicidal activity. J Exp Med. 1978 Jul 1;148(1):288–300. doi: 10.1084/jem.148.1.288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Norris S. J., Miller J. N., Sykes J. A. Long-term incorporation of tritiated adenine into deoxyribonucleic acid and ribonucleic acid by Treponema pallidum (Nichols strain). Infect Immun. 1980 Sep;29(3):1040–1049. doi: 10.1128/iai.29.3.1040-1049.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Patterson R. J., Youmans G. P. Demonstration in tissue culture of lymphocyte-mediated immunity to tuberculosis. Infect Immun. 1970 Jun;1(6):600–603. doi: 10.1128/iai.1.6.600-603.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Patterson R. J., Youmans G. P. Multiplication of Mycobacterium tuberculosis Within Normal and "Immune" Mouse Macrophages Cultivated With and Without Streptomycin. Infect Immun. 1970 Jan;1(1):30–40. doi: 10.1128/iai.1.1.30-40.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Philp J. R., Huffman A. L., DeChatelet L. R., Johnson J. E. Amplified migration inhibition effect. Infect Immun. 1980 Aug;29(2):609–616. doi: 10.1128/iai.29.2.609-616.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Walker L., Lowrie D. B. Killing of Mycobacterium microti by immunologically activated macrophages. Nature. 1981 Sep 3;293(5827):69–71. doi: 10.1038/293069a0. [DOI] [PubMed] [Google Scholar]
  18. Zlotnik A., Vatter A., Hayes R. L., Blumenthal E., Crowle A. J. Mouse pleural macrophages: characterization and comparison with mouse alveolar and peritoneal macrophages. J Reticuloendothel Soc. 1982 Mar;31(3):207–220. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES