Skip to main content
Cytotechnology logoLink to Cytotechnology
. 2006 Jun 14;50(1-3):93–108. doi: 10.1007/s10616-006-6550-0

Recommended Method for Chromosome Exploitation: RMCE-based Cassette-exchange Systems in Animal Cell Biotechnology

André Oumard 1, Junhua Qiao 1, Thomas Jostock 2, Jiandong Li 2, Juergen Bode 1,
PMCID: PMC3476001  PMID: 19003073

Abstract

The availability of site-specific recombinases has revolutionized the rational construction of cell lines with predictable properties. Early efforts were directed to providing pre-characterized genomic loci with a single recombinase target site that served as an address for the integration of vectors carrying a compatible tag. Efficient procedures of this type had to await recombinases like ΦC31, which recombine attP and attB target sites in a one-way reaction — at least in the cellular environment of the higher eukaryotic cell. Still these procedures lead to the co-introduction of prokaryotic vector sequences that are known to cause epigenetic silencing. This review illuminates the actual status of the more advanced recombinase-mediated cassette exchange (RMCE) techniques that have been developed for the major members of site-specific recombinases (SR), Flp, Cre and ΦC31. In RMCE the genomic address consists of a set of heterospecific recombinase target (RT-) sites permitting the exchange of the intervening sequence for the gene of interest (GOI), as part of a similar cassette. This process locks the GOI in place and it is ‘clean’ in the sense that it does not co-introduce prokaryotic vector parts nor does it leave behind a selection marker.

Key words: Cassette exchange, Flexing, Floxing, Flrting, Froxing, RMCE, Site-specific recombinase, Tissue engineering

Glossary

FRT

Flp-recombinase target site

HR

homologous recombination

RMCE

recombinase-mediated cassette exchange

RT

recombinase target

SR

site-specific recombination

References

  1. Andreas S., Schwenk F., Küter-Luks B., Faust N., Kühn R. Enhanced efficiency through nuclear localization signal fusion on phage C31-integrase: activity comparison with Cre and FLPe recombinase in mammalian cells. Nucleic Acids Res. 2002;30:2299–2306. doi: 10.1093/nar/30.11.2299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baer A., Schübeler D., Bode J. Transcriptional properties of genomic transgene integration sites marked by electroporation or retroviral infection. Biochemistry. 2000;39:7041–7049. doi: 10.1021/bi992957o. [DOI] [PubMed] [Google Scholar]
  3. Baer A., Bode J. Coping with kinetic and thermodynamic barriers: RMCEan efficient strategy for the targeted integration of transgenes. Curr. Opin. Biotech. 2001;12:473–480. doi: 10.1016/S0958-1669(00)00248-2. [DOI] [PubMed] [Google Scholar]
  4. Baer A. 2002. Funktioneller Vergleich von S/MARs (‘scaffold/matrix attachment regions’ und Insulatoren im chromosomalen Kontext. Dissertation, University of Braunschweig; http://www.biblio.tu-bs.de/ediss/data/20021106a/20021106a.pdf.
  5. Bautista D., Shulman M.J. A hit-and-run system for introducing mutations into the Ig H chain locus of hybridoma cells by homologous recombination. J. Immunol. 1993;151:1950–1958. [PubMed] [Google Scholar]
  6. Belteki G., Gertsenstein M., Ow D.W., Nagy A. Site-specific cassette exchange and germline transmission with mouse ES cells expressing phiC31 integrase. Nat. Biotechnol. 2003;21:321–324. doi: 10.1038/nbt787. [DOI] [PubMed] [Google Scholar]
  7. Bode J., Bartsch J., Boulikas T., Iber M., Mielke C., Schübeler D., Seibler J. and Benham C. 1998. Transcription-promoting genomic sites in mammalia: their elucidation and architectural principles. Gene Ther. Mol. Biol. 1: 551–880.http://www.gtmb.org/volume1/29_Bode.htm.
  8. Bode J., Schlake T., Iber M., Schübeler D., Seibler J., Snezhkov E., Nikolaev L. The transgeneticist’s toolbox — novel methods for the targeted modification of eukaryotic genomes. Biol. Chem. 2000;381:801–813. doi: 10.1515/BC.2000.103. [DOI] [PubMed] [Google Scholar]
  9. Bode J., Goetze S., Ernst E., Huesemann Y., Baer A., Seibler J., Mielke C. Architecture and utilization of highly-expressed genomic sites in New Comprehensive Biochemistry Vol 38. In: Makrides S., Bernardi G., editors. Gene Transfer and Expression in Mammalian Cells. Amsterdam: Elsevier; 2003. [Google Scholar]
  10. Bode J., Winkelmann S., Götze S., Spiker S., Tsutsui K., Bi C. and Benham C. 2005. Correlations between scaffold/matrix attachment region (S/MAR) binding activity and DNA duplex destabilization energy. J. Mol. Biol. in press. [DOI] [PubMed]
  11. Bouhassira E., Westerman K., Leboulch P. Transcriptional behavior of LCR enhancer elements integrated at the same chromosomal locus by recombinase-mediated cassette exchange. Blood. 1997;90:3332–3344. [PubMed] [Google Scholar]
  12. Branda C.S., Dymecki S.M. Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Develop. Cell. 2004;6:7–28. doi: 10.1016/S1534-5807(03)00399-X. [DOI] [PubMed] [Google Scholar]
  13. Buchholz F., Ringrose L., Angrand P., Rossi F., Stewart A. Different thermostabilities of FLP and Cre recombinases: implications for applied site specific recombination. Nucl. Acids Res. 1996;24:4256–4262. doi: 10.1093/nar/24.21.4256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Buchholz F., Angrand P.-O., Stewart A.F. Improved properties of Flp recombinase evolved by cycling mutagenesis. Nat. Biotechnol. 1998;16:657–662. doi: 10.1038/nbt0798-657. [DOI] [PubMed] [Google Scholar]
  15. Cesari F., Rennekampff V., Vintersten K., Vuong L.G., Seibler J., Bode J., Wiebel F.F., Nordheim A. Elk-1 knock-out mice engineered by Flp recombinase-mediated cassette exchange. Genesis. 2004;38:87–92. doi: 10.1002/gene.20003. [DOI] [PubMed] [Google Scholar]
  16. Cobellis G., Nicolaus G., Iovino M., Romito A., Marra E., Barbarisi M., Sardiello M., Di Giorgio F.P., Iovino N., Zollo M., Ballabio A., Cortese R. Tagging genes with cassette-exchange sites. Nucl. Acids Res. 2005;33(4):e44. doi: 10.1093/nar/gni045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Coroadinha A.S., Schucht R., Gama-Norton L., Wirth D., Hauser H. and Carrondo M.J.T. 2005. The use of recombinase cassette exchange in retroviral vector producer cell lines: predictability and efficiency in transgene replacement. J. Biotechnol., Submitted. [DOI] [PubMed]
  18. Fukushige S., Sauer B. Genomic targeting with a positive-selection lox integration vector allows highly reproducible gene expression in mammalian cells. Proc. Natl. Acad. Sci. 1992;89:7905–7909. doi: 10.1073/pnas.89.17.7905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Garrick D., Fiering S., Martin D.I.K., Whitelaw E. Repeat-induced gene silencing in mammals. Nat. Genet. 1998;18:56–59. doi: 10.1038/ng0198-56. [DOI] [PubMed] [Google Scholar]
  20. Goetze S., Huesemann Y., Baer A., Bode J. Functional characterization of transgene integration patterns by Halo-FISH: electroporation versus retroviral infection. Biochemistry. 2003;42:7035–7043. doi: 10.1021/bi0340907. [DOI] [PubMed] [Google Scholar]
  21. Goetze S., Baer A., Winkelmann S., Nehlsen K., Seibler J., Maass K., Bode J. Genomic bordering elements: their performance at pre defined genomic loci. Mol. Cell. Biol. 2005;25:2260–2272. doi: 10.1128/MCB.25.6.2260-2272.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Grabenhorst E., Schlenke P., Pohl S., Nimtz M., Conradt H.S. Genetic engineering of recombinant glycoproteins and the glycosylation pathway in mammalian host cells. Glycoconjugate J. 1999;16:81–97. doi: 10.1023/A:1026466408042. [DOI] [PubMed] [Google Scholar]
  23. Groth A.C., Olivares E.C., Thyagarajan B., Calos M.P. A phage integrase directs efficient site-specific integration in human cells. Proc. Natl. Acad. Sci. USA. 2000;97:5995–6000. doi: 10.1073/pnas.090527097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kolot M., Silberstein N., Yagil E. Site specific recombination in mammalian cells expressing the Int recombinase of bacteriophage HK022. Mol. Biol. Rep. 1999;26:207–213. doi: 10.1023/A:1007096701720. [DOI] [PubMed] [Google Scholar]
  25. Kouzine K., Liu L., Sanford S., Chung H.J., Levens D. The dynamic response of upstream DNA to transcription-generated torsional stress. Nature Struct. Mol. Biol. 2004;11:1092–1100. doi: 10.1038/nsmb848. [DOI] [PubMed] [Google Scholar]
  26. Lauth M., Spreafico F., Dethleffsen K., Meyer M. Stable and efficient cassette exchange under non-selectable conditions by combined use of two site-specific recombinases. Nucl. Acids Res. 2002;30:e115. doi: 10.1093/nar/gnf114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mlynarova L., Libantova J., Vrba L., Nap J.P. The promiscuity of heterospecific lox sites increases dramatically in the presence of palindromic DNA. Gene. 2002;296:129–137. doi: 10.1016/S0378-1119(02)00841-7. [DOI] [PubMed] [Google Scholar]
  28. Nakano M., Odaka K., Takahashi Y., Ishimura M., Saito I., Kanegae Y. Production of viral vectors using recombinase-mediated cassette exchange. Nucl. Acids Res. 2005;33:e76. doi: 10.1093/nar/gni074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ng P., Baker M.D. High efficiency site-specific modification of the chromosomal immunoglobulin locus by gene targeting. J. Immunol. Meth. 1998;214:81–96. doi: 10.1016/S0022-1759(98)00033-7. [DOI] [PubMed] [Google Scholar]
  30. O’Gorman S., Fox D.T., Wahl G.M. Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science. 1991;251:1351–1355. doi: 10.1126/science.1900642. [DOI] [PubMed] [Google Scholar]
  31. Peitz M., Pfannkuche K., Rajewsky K., Edenhofer F. Ability of the hydrophobic FGF and basic TAT peptides to promote cellular uptake of recombinant Cre recombinase: a tool for efficient genetic engineering of mammalian genomes. Proc. Natl. Acad. Sci. USA. 2002;99:4489–4494. doi: 10.1073/pnas.032068699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Roebroek A.J.M., Reekmans S., Lauwers A., Feyaerts N., Smeijers L. and Hartmann D. 2006. Mutant Lrp1 knock-in mice generated by RMCE reveal differential importance of the NPXY motifs in the intracellular domain of LRP1 for normal fetal development. Mol. Cell Biol. 26: 605–616 [DOI] [PMC free article] [PubMed]
  33. Riu E., Grimm D., Huang Z., Mark A., Kay M.A. Increased maintenance and persistence of transgenes by excision of expression cassettes from plasmid sequences in vivo. Hum. Gene. Ther. 2005;16:558–570. doi: 10.1089/hum.2005.16.558. [DOI] [PubMed] [Google Scholar]
  34. Schlake T., Bode J. Use of mutated FLP recognition target (FRT) sites for the exchange of expression cassettes at defined chromosomal loci. Biochemistry. 1994;33:12746–12751. doi: 10.1021/bi00209a003. [DOI] [PubMed] [Google Scholar]
  35. Schmidt E.E., Taylor D.S., Prigge J.R., Arnett S., Capecchi M.R. Illegitimate Cre-dependent chromosome rearrangements in transgenic mouse spermatids. Proc. Natl. Acad. Sci. USA. 2000;97:13702–13707. doi: 10.1073/pnas.240471297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Schnütgen F., Doerflinger N., Calléja C., Wendling O., Chambon P., Ghyselinck N.B. A directional strategy for monitoring Cre-mediated recombination at the cellular level in the mouse. Nat. Biotechnol. 2003;21:562–565. doi: 10.1038/nbt811. [DOI] [PubMed] [Google Scholar]
  37. Schucht R., Coroadinha A.S., Zanta-Boussif M.A., Carrondo M., Hauser H. and Wirth D. 2005. A new generation of retroviral producer cells: predictable and stable virus production by Flp mediated site-specific integration of retroviral vectors. Mol. Thera., Submitted. [DOI] [PubMed]
  38. Schübeler D., Bode J. Retargeting of retroviral integration sites for the predictable expression of transgenes and the analysis of cis-acting sequences. Biochemistry. 1998;37:11907–11914. doi: 10.1021/bi9807052. [DOI] [PubMed] [Google Scholar]
  39. Seibler J., Schübeler D., Fiering S., Groudine M., Bode J. DNA cassette exchange mediated by FLP recombinase: an efficient strategy for the repeated modification of tagged loci by marker-free constructs. Biochemistry. 1998;37:6229–6234. doi: 10.1021/bi980288t. [DOI] [PubMed] [Google Scholar]
  40. Seibler J., Küter-Luks B., Kern H., Streu S., Plum L., Mauer J., Kühn R., Brüning J.C., Schwenk F. Single copy shRNA configuration for ubiquitous gene knockdown in mice. Nucl. Acids Res. 2005;33:e67. doi: 10.1093/nar/gni065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Stark W.M., Boocock M.R., Sherratt D.J. Catalysis by site-specific recombinases. Trends Genet. 1992;8:432–439. doi: 10.1016/0168-9525(92)90176-5. [DOI] [PubMed] [Google Scholar]
  42. Taniguchi M., Sanbo M., Watanabe S., Naruse I., Mishina M., Yagi T. Efficient production of Cre-mediated site-directed recombinants through the utilization of the puromycin resistance genepac: a transient gene-integration marker for ES cells. Nucl. Acids Res. 1998;26:679–680. doi: 10.1093/nar/26.2.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Thorpe H.M., Smith M.C.M. In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. Proc. Natl. Acad. Sci. USA. 1998;95:5505–5510. doi: 10.1073/pnas.95.10.5505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Thyagarajan B., Olivares E.C., Hollis R.P., Ginsburg D.S., Calos M.P. Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase. Mol. Cell Biol. 2001;21:3926–3934. doi: 10.1128/MCB.21.12.3926-3934.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Umlauf S.W., Cox M.M. The functional significance of DNA sequence structure in a site-specific genetic recombination reaction. EMBO J. 1988;7:1845–1852. doi: 10.1002/j.1460-2075.1988.tb03017.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Unsinger J., Lindenmaier W., May T., Hauser H., Wirth D. Stable and strictly controlled expression of LTR-flanked autoregulated expression cassettes upon adenoviral transfer. Biochem. Biophys. Res. Commun. 2004;319:879–887. doi: 10.1016/j.bbrc.2004.05.067. [DOI] [PubMed] [Google Scholar]
  47. Weidle U.H., Buckel P., Wienberg J. Amplified expression constructs for human tissue-type plasminogen activator in Chinese hamster ovary cells: instability in the absence of selective pressure. Gene. 1988;66:193–203. doi: 10.1016/0378-1119(88)90356-3. [DOI] [PubMed] [Google Scholar]
  48. Winkler K., Wermelinger T., Paul C., Koch S., Brecht S., Zietze S., Nuck R., Thiel G., Marx U. and Sandig V. 2005. Targeting the human IgH loci for high level heterologous gene expression. In: Gòdia F. and Fussenegger M.(eds) ESACT Proceedings, Vol. 2. Animal Cell Technology Meets Genomics. SpringerNetherlands, pp.403–409.ISBN: 1-4020-2791-5
  49. Wirth M., Bode J., Zettelmeissl G., Hauser H. Isolation of overproducing recombinant mammalian cell lines by a fast and simple selection procedure. Gene. 1988;73:419–426. doi: 10.1016/0378-1119(88)90506-9. [DOI] [PubMed] [Google Scholar]
  50. Wirth D., Hauser H. Flp-mediated integration of expression cassettes into FRT-tagged chromosomal loci in mammalian cells. Methods Mol. Biol. 2004;267:467–476. doi: 10.1385/1-59259-774-2:467. [DOI] [PubMed] [Google Scholar]
  51. Wong E.T., Kolman J.L., Li Y.C., Mesner L.D., Hillen W., Berens C., Wahl G.M. Reproducible doxycycline-inducible transgene expression at specific loci generated by Cre-recombinase mediated cassette exchange. Nucl. Acids Res. 2005;33(17):e147. doi: 10.1093/nar/gni145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Wurm F.M., Jordan M. Gene transfer and gene amplification in mammalian cells in “New Comprehensive Biochemistry 38”. In: Bernardi G., editor. A Gene Transfer and Expression in Mammalian Cells, Chapter 7. S. Makrides, Volume Ed. Amsterdam: Elsevier; 2003. pp. 307–335. [Google Scholar]

Articles from Cytotechnology are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES