Skip to main content
Cytotechnology logoLink to Cytotechnology
. 2006 Jul 1;50(1-3):77–92. doi: 10.1007/s10616-006-9008-5

Regulating apoptosis in mammalian cell cultures

Nilou Arden 1, M J Betenbaugh 1,
PMCID: PMC3476002  PMID: 19003072

Abstract

Cell culture technology has become a widely accepted method used to derive therapeutic and diagnostic protein products. Mammalian cells adapted to grow in bioreactors now play an integral role in the development of these biologicals. A major limiting factor determining the output efficiency of mammalian cell cultures however, is apoptosis or programmed cell death. Methods to delay apoptosis and increase the longevity of cell cultures can lead to more economical processes. Researchers have shown that both genetic and chemical strategies to block apoptotic signals can increase cell culture productivity. Here, we discuss various strategies which have been implemented to improve cellular viabilities and productivities in batch cultures.

Keywords: Mammalian cell culture, Apoptosis, Bcl-2 protein, Cell cycle arrest, Recombinant protein production

References

  1. Adams JM. Ways of dying: multiple pathways to apoptosis. Genes Dev. 2003;17:2481–2495. doi: 10.1101/gad.1126903. [DOI] [PubMed] [Google Scholar]
  2. Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science. 1998;281:1322–1326. doi: 10.1126/science.281.5381.1322. [DOI] [PubMed] [Google Scholar]
  3. Adams JM, Cory S. Life-or-death decisions by the Bcl-2 protein family. Trends Biochem Sci. 2001;26:61–66. doi: 10.1016/S0968-0004(00)01740-0. [DOI] [PubMed] [Google Scholar]
  4. al-Rubeai M, Singh RP. Apoptosis in cell culture. Curr Opin Biotechnol. 1998;9:152–156. doi: 10.1016/S0958-1669(98)80108-0. [DOI] [PubMed] [Google Scholar]
  5. al-Rubeai M, Mills D, Emery AN. Electron microscopy of hybridoma cells with special regard to monoclonal antibody production. Cytotechnology. 1990;4:13–28. doi: 10.1007/BF00148807. [DOI] [PubMed] [Google Scholar]
  6. Arden N, Betenbaugh MJ. Life and death in mammalian cell culture: strategies for apoptosis inhibition. Trends Biotechnol. 2004;22:174–180. doi: 10.1016/j.tibtech.2004.02.004. [DOI] [PubMed] [Google Scholar]
  7. Ashkenazi A. Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer. 2002;2:420–430. doi: 10.1038/nrc821. [DOI] [PubMed] [Google Scholar]
  8. Bhonde MR, Hanski ML, Budczies J, Cao M, Gillissen B, Moorthy D, Simonetta F, Scherubl H, Truss M, Hagemeier C, et al. DNA damage-induced expression of p53 suppresses mitotic checkpoint kinase hMps1: the lack of this suppression in p53mut cells contributes to apoptosis. J Biol Chem. 2006;281:8675–8685. doi: 10.1074/jbc.M511333200. [DOI] [PubMed] [Google Scholar]
  9. Boatright KM, Salvesen GS. Mechanisms of caspase activation. Curr Opin Cell Biol. 2003;15:725–731. doi: 10.1016/j.ceb.2003.10.009. [DOI] [PubMed] [Google Scholar]
  10. Boya P, Roumier T, Andreau K, Gonzalez-Polo RA, Zamzami N, Castedo M, Kroemer G. Mitochondrion-targeted apoptosis regulators of viral origin. Biochem Biophys Res Commun. 2003;304:575–581. doi: 10.1016/S0006-291X(03)00630-2. [DOI] [PubMed] [Google Scholar]
  11. Breckenridge DG, Germain M, Mathai JP, Nguyen M, Shore GC. Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene. 2003;22:8608–8618. doi: 10.1038/sj.onc.1207108. [DOI] [PubMed] [Google Scholar]
  12. Charbonneau JR, Furtak T, Lefebvre J, Gauthier ER. Bcl-xL expression interferes with the effects of L-glutamine supplementation on hybridoma cultures. Biotechnol Bioeng. 2003;81:279–290. doi: 10.1002/bit.10467. [DOI] [PubMed] [Google Scholar]
  13. Cheng EH, Levine B, Boise LH, Thompson CB, Hardwick JM. Bax-independent inhibition of apoptosis by Bcl-XL. Nature. 1996;379:554–556. doi: 10.1038/379554a0. [DOI] [PubMed] [Google Scholar]
  14. Cheng EH, Wei MC, Weiler S, Flavell RA, Mak TW, Lindsten T, Korsmeyer SJ. BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell. 2001;8:705–711. doi: 10.1016/S1097-2765(01)00320-3. [DOI] [PubMed] [Google Scholar]
  15. Chiang GG, Sisk WP. Bcl-x(L) mediates increased production of humanized monoclonal antibodies in Chinese hamster ovary cells. Biotechnol Bioeng. 2005a;91:779–792. doi: 10.1002/bit.20551. [DOI] [PubMed] [Google Scholar]
  16. Chiang GG, Sisk WP (2005b) Bcl-x(L) mediates increased production of humanized monoclonal antibodies in Chinese hamster ovary cells. Biotechnol Bioeng. Jun 28 [DOI] [PubMed]
  17. Chipuk JE, Green DR (2006) Dissecting p53-dependent apoptosis. Cell Death Differ [DOI] [PubMed]
  18. Cho Y, Gorina S, Jeffrey PD, Pavletich NP. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science. 1994;265:346–355. doi: 10.1126/science.8023157. [DOI] [PubMed] [Google Scholar]
  19. Chung JD, Sinskey AJ, Stephanopoulos G. Growth factor and bcl-2 mediated survival during abortive proliferation of hybridoma cell line. Biotechnol Bioeng. 1998;57:164–171. doi: 10.1002/(SICI)1097-0290(19980120)57:2<164::AID-BIT5>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
  20. Cohen JJ. Apoptosis. Immunol Today. 1993;14:126–130. doi: 10.1016/0167-5699(93)90214-6. [DOI] [PubMed] [Google Scholar]
  21. Cory S, Huang DC, Adams JM. The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene. 2003;22:8590–8607. doi: 10.1038/sj.onc.1207102. [DOI] [PubMed] [Google Scholar]
  22. Cudna RE, Dickson AJ. Endoplasmic reticulum signaling as a determinant of recombinant protein expression. Biotechnol Bioeng. 2003;81:56–65. doi: 10.1002/bit.10445. [DOI] [PubMed] [Google Scholar]
  23. Cummings MC, Winterford CM, Walker NI. Apoptosis. Am J Surg Pathol. 1997;21:88–101. doi: 10.1097/00000478-199701000-00010. [DOI] [PubMed] [Google Scholar]
  24. deZengotita VM, Schmelzer AE, Miller WM. Characterization of hybridoma cell responses to elevated pCO(2) and osmolality: intracellular pH, cell size, apoptosis, and metabolism. Biotechnol Bioeng. 2002;77:369–380. doi: 10.1002/bit.10176. [DOI] [PubMed] [Google Scholar]
  25. Ferri KF, Kroemer G. Organelle-specific initiation of cell death pathways. Nat Cell Biol. 2001;3:E255–E263. doi: 10.1038/ncb1101-e255. [DOI] [PubMed] [Google Scholar]
  26. Figueroa B, Jr, Sauerwald TM, Mastrangelo AJ, Hardwick JM, Betenbaugh MJ. Comparison of Bcl-2 to a Bcl-2 deletion mutant for mammalian cells exposed to culture insults. Biotechnol Bioeng. 2001;73:211–222. doi: 10.1002/bit.1053. [DOI] [PubMed] [Google Scholar]
  27. Figueroa B, Jr, Sauerwald TM, Oyler GA, Hardwick JM, Betenbaugh MJ. A comparison of the properties of a Bcl-xL variant to the wild-type anti-apoptosis inhibitor in mammalian cell cultures. Metab Eng. 2003;5:230–245. doi: 10.1016/S1096-7176(03)00044-2. [DOI] [PubMed] [Google Scholar]
  28. Follstad BD, Wang DI, Stephanopoulos G. Mitochondrial membrane potential selects hybridomas yielding high viability in fed-batch cultures. Biotechnol Prog. 2002;18:1–5. doi: 10.1021/bp010132b. [DOI] [PubMed] [Google Scholar]
  29. Franek F, Dolnikova J. Hybridoma growth and monoclonal antibody production in iron-rich protein-free medium: effect of nutrient concentration. Cytotechnology. 1991;7:33–38. doi: 10.1007/BF00135636. [DOI] [PubMed] [Google Scholar]
  30. Franek F, Sramkova K. Protection of B lymphocyte hybridoma against starvation-induced apoptosis: survival-signal role of some amino acids. Immunol Lett. 1996;52:139–144. doi: 10.1016/0165-2478(96)02591-6. [DOI] [PubMed] [Google Scholar]
  31. Goswami J, Sinskey AJ, Steller H, Stephanopoulos GN, Wang DI. Apoptosis in batch cultures of Chinese hamster ovary cells. Biotechnol Bioeng. 1999;62:632–640. doi: 10.1002/(SICI)1097-0290(19990320)62:6<632::AID-BIT2>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
  32. Gueven N, Becherel OJ, Birrell G, Chen P, DelSal G, Carney JP, Grattan-Smith P, Lavin MF. Defective p53 response and apoptosis associated with an ataxia-telangiectasia-like phenotype. Cancer Res. 2006;66:2907–2912. doi: 10.1158/0008-5472.CAN-05-3428. [DOI] [PubMed] [Google Scholar]
  33. Guo B, Zhai D, Cabezas E, Welsh K, Nouraini S, Satterthwait AC, Reed JC. Humanin peptide suppresses apoptosis by interfering with Bax activation. Nature. 2003;423:456–461. doi: 10.1038/nature01627. [DOI] [PubMed] [Google Scholar]
  34. Huo JX, Metz SA, Li GD. p53-independent induction of p21(waf1/cip1) contributes to the activation of caspases in GTP-depletion-induced apoptosis of insulin-secreting cells. Cell Death Differ. 2004;11:99–109. doi: 10.1038/sj.cdd.4401322. [DOI] [PubMed] [Google Scholar]
  35. Jendrossek V, Muller I, Eibl H, Belka C. Intracellular mediators of erucylphosphocholine-induced apoptosis. Oncogene. 2003;22:2621–2631. doi: 10.1038/sj.onc.1206355. [DOI] [PubMed] [Google Scholar]
  36. Jung D, Cote S, Drouin M, Simard C, Lemieux R. Inducible expression of Bcl-XL restricts apoptosis resistance to the antibody secretion phase in hybridoma cultures. Biotechnol Bioeng. 2002;79:180–187. doi: 10.1002/bit.10279. [DOI] [PubMed] [Google Scholar]
  37. Kaufman RJ. Orchestrating the unfolded protein response in health and disease. J Clin Invest. 2002;110:1389–1398. doi: 10.1172/JCI16886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Kaufman RJ, Scheuner D, Schroder M, Shen X, Lee K, Liu CY, Arnold SM. The unfolded protein response in nutrient sensing and differentiation. Nat Rev Mol Cell Biol. 2002;3:411–421. doi: 10.1038/nrm829. [DOI] [PubMed] [Google Scholar]
  39. Kelekar A, Chang BS, Harlan JE, Fesik SW, Thompson CB. Bad is a BH3 domain-containing protein that forms an inactivating dimer with Bcl-XL. Mol Cell Biol. 1997;17:7040–7046. doi: 10.1128/mcb.17.12.7040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26:239–257. doi: 10.1038/bjc.1972.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Kim NS, Lee GM. Inhibition of sodium butyrate-induced apoptosis in recombinant Chinese hamster ovary cells by constitutively expressing antisense RNA of caspase-3. Biotechnol Bioeng. 2002a;78:217–228. doi: 10.1002/bit.10191. [DOI] [PubMed] [Google Scholar]
  42. Kim NS, Lee GM. Response of recombinant Chinese hamster ovary cells to hyperosmotic pressure: effect of Bcl-2 overexpression. J Biotechnol. 2002b;95:237–248. doi: 10.1016/S0168-1656(02)00011-1. [DOI] [PubMed] [Google Scholar]
  43. Kischkel FC, Lawrence DA, Tinel A, LeBlanc H, Virmani A, Schow P, Gazdar A, Blenis J, Arnott D, Ashkenazi A. Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8. J Biol Chem. 2001;276:46639–46646. doi: 10.1074/jbc.M105102200. [DOI] [PubMed] [Google Scholar]
  44. Komiyama T, Ray CA, Pickup DJ, Howard AD, Thornberry NA, Peterson EP, Salvesen G. Inhibition of interleukin-1 beta converting enzyme by the cowpox virus serpin CrmA. An example of cross-class inhibition. J Biol Chem. 1994;269:19331–19337. [PubMed] [Google Scholar]
  45. Lasunskaia EB, Fridlianskaia II, Darieva ZA, da Silva MS, Kanashiro MM, Margulis BA. Transfection of NS0 myeloma fusion partner cells with HSP70 gene results in higher hybridoma yield by improving cellular resistance to apoptosis. Biotechnol Bioeng. 2003;81:496–504. doi: 10.1002/bit.10493. [DOI] [PubMed] [Google Scholar]
  46. Lasunskaia EB, Fridlianskaia II, Darieva ZA, Da Silva MSR, Kanashiro MM, Margulis BA (2005) Transfection of NS0 myeloma fusion partner cells with HSP70 gene results in higher hybridoma yield by improving cellular resistance to apoptosis. Biotechnol Bioeng 81:496–504 [DOI] [PubMed]
  47. LeBlanc HN, Ashkenazi A. Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ. 2003;10:66–75. doi: 10.1038/sj.cdd.4401187. [DOI] [PubMed] [Google Scholar]
  48. Lee SK, Lee GM. Development of apoptosis-resistant dihydrofolate reductase-deficient Chinese hamster ovary cell line. Biotechnol Bioeng. 2003;82:872–876. doi: 10.1002/bit.10633. [DOI] [PubMed] [Google Scholar]
  49. Lindsten T, Ross AJ, King A, Zong WX, Rathmell JC, Shiels HA, Ulrich E, Waymire KG, Mahar P, Frauwirth K, et al. The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell. 2000;6:1389–1399. doi: 10.1016/S1097-2765(00)00136-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell. 1996;86:147–157. doi: 10.1016/S0092-8674(00)80085-9. [DOI] [PubMed] [Google Scholar]
  51. Mastrangelo AJ, Betenbaugh MJ. Overcoming apoptosis: new methods for improving protein-expression systems. Trends Biotechnol. 1998;16:88–95. doi: 10.1016/S0167-7799(97)01159-1. [DOI] [PubMed] [Google Scholar]
  52. Mastrangelo AJ, Hardwick JM, Betenbaugh MJ. BCl-2 apoptosis and extends recombinant protein production cells infected with Sindbis viral vectors. Cytotechnology. 1996;22:169–178. doi: 10.1007/BF00353936. [DOI] [PubMed] [Google Scholar]
  53. Mastrangelo AJ, Hardwick JM, Bex F, Betenbaugh MJ. Part I. Bcl-2 and Bcl-x(L) limit apoptosis upon infection with alphavirus vectors. Biotechnol Bioeng. 2000a;67:544–554. doi: 10.1002/(SICI)1097-0290(20000305)67:5<544::AID-BIT5>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
  54. Mastrangelo AJ, Hardwick JM, Zou S, Betenbaugh MJ. Part II. Overexpression of bcl-2 family members enhances survival of mammalian cells in response to various culture insults. Biotechnol Bioeng. 2000b;67:555–564. doi: 10.1002/(SICI)1097-0290(20000305)67:5<555::AID-BIT6>3.0.CO;2-T. [DOI] [PubMed] [Google Scholar]
  55. Mazur X, Fussenegger M, Renner WA, Bailey JE. Higher productivity of growth-arrested Chinese hamster ovary cells expressing the cyclin-dependent kinase inhibitor p27. Biotechnol Prog. 1998;14:705–713. doi: 10.1021/bp980062h. [DOI] [PubMed] [Google Scholar]
  56. Meents H, Enenkel B, Eppenberger HM, Werner RG, Fussenegger M. Impact of coexpression and coamplification of sICAM and antiapoptosis determinants bcl-2/bcl-x(L) on productivity, cell survival, and mitochondria number in CHO-DG44 grown in suspension and serum-free media. Biotechnol Bioeng. 2002;80:706–716. doi: 10.1002/bit.10449. [DOI] [PubMed] [Google Scholar]
  57. Mercille S, Massie B. Induction of apoptosis in nutrient deprived cultures of hybridoma and myeloma cells. Biotechnol Bioeng. 1994a;44:1140–1154. doi: 10.1002/bit.260440916. [DOI] [PubMed] [Google Scholar]
  58. Mercille S, Massie B. Induction of apoptosis in oxygen-deprived cultures of hybridoma cells. Cytotechnology. 1994b;15:117–128. doi: 10.1007/BF00762386. [DOI] [PubMed] [Google Scholar]
  59. Mercille S, Jolicoeur P, Gervais C, Paquette D, Mosser DD, Massie B. Dose-dependent reduction of apoptosis in nutrient-limited cultures of NS/0 myeloma cells transfected with the E1B-19 K adenoviral gene. Biotechnol Bioeng. 1999;63:516–528. doi: 10.1002/(SICI)1097-0290(19990605)63:5<516::AID-BIT2>3.0.CO;2-9. [DOI] [PubMed] [Google Scholar]
  60. Nicholls CD, McLure KG, Shields MA, Lee PW. Biogenesis of p53 involves cotranslational dimerization of monomers and posttranslational dimerization of dimers. Implications on the dominant negative effect. J Biol Chem. 2002;277:12937–12945. doi: 10.1074/jbc.M108815200. [DOI] [PubMed] [Google Scholar]
  61. Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T, Tokino T, Taniguchi T, Tanaka N. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science. 2000;288:1053–1058. doi: 10.1126/science.288.5468.1053. [DOI] [PubMed] [Google Scholar]
  62. Patil C, Walter P. Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals. Curr Opin Cell Biol. 2001;13(3):349–355. doi: 10.1016/S0955-0674(00)00219-2. [DOI] [PubMed] [Google Scholar]
  63. Perani A. VAriable functions of bcl-2 in mediating strss-induced apoptosis in hybridoma cells. Cytotechnology. 1998;28:177–188. doi: 10.1023/A:1008002319400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Raff M. Cell suicide for beginners. Nature. 1998;396(6707):119–122. doi: 10.1038/24055. [DOI] [PubMed] [Google Scholar]
  65. Rao RV, Poksay KS, Castro-Obregon S, Schilling B, Row RH, del Rio G, Gibson BW, Ellerby HM, Bredesen DE. Molecular components of a cell death pathway activated by endoplasmic reticulum stress. J Biol Chem. 2004;279:177–187. doi: 10.1074/jbc.M304490200. [DOI] [PubMed] [Google Scholar]
  66. Ron D. Translational control in the endoplasmic reticulum stress response. J Clin Invest. 2002;110:1383–1388. doi: 10.1172/JCI16784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Sak A, Wurm R, Elo B, Grehl S, Pottgen C, Stuben G, Sinn B, Wolf G, Budach V, Stuschke M. Increased radiation-induced apoptosis and altered cell cycle progression of human lung cancer cell lines by antisense oligodeoxynucleotides targeting p53 and p21(WAF1/CIP1) Cancer Gene Ther. 2003;10:926–934. doi: 10.1038/sj.cgt.7700649. [DOI] [PubMed] [Google Scholar]
  68. Sanfeliu A, Stephanopoulos G. Effect of glutamine limitation on the death of attached Chinese hamster ovary cells. Biotechnol Bioeng. 1999;64:46–53. doi: 10.1002/(SICI)1097-0290(19990705)64:1<46::AID-BIT5>3.0.CO;2-9. [DOI] [PubMed] [Google Scholar]
  69. Sauerwald TM, Betenbaugh MJ. Apoptosis in biotechnology: its role in mammalian cell culture and methods of inhibition. BioProcessing. 2002;1:61–68. [Google Scholar]
  70. Sauerwald TM, Betenbaugh MJ, Oyler GA. Inhibiting apoptosis in mammalian cell culture using the caspase inhibitor XIAP and deletion mutants. Biotechnol Bioeng. 2002;77:704–716. doi: 10.1002/bit.10154. [DOI] [PubMed] [Google Scholar]
  71. Sauerwald TM, Oyler GA, Betenbaugh MJ. Study of caspase inhibitors for limiting death in mammalian cell culture. Biotechnol Bioeng. 2003;81:329–340. doi: 10.1002/bit.10473. [DOI] [PubMed] [Google Scholar]
  72. Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T, Korsmeyer SJ. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science. 2003;300:135–139. doi: 10.1126/science.1081208. [DOI] [PubMed] [Google Scholar]
  73. Simpson NH, Singh RP, Emery AN, Al-Rubeai M. Bcl-2 over-expression reduces growth rate and prolongs G1 phase in continuous chemostat cultures of hybridoma cells. Biotechnol Bioeng. 1999;64:174–186. doi: 10.1002/(SICI)1097-0290(19990720)64:2<174::AID-BIT6>3.0.CO;2-D. [DOI] [PubMed] [Google Scholar]
  74. Singh RP, al-Rubeai M. Apoptosis and bioprocess technology. Adv Biochem Eng Biotechnol. 1998;62:167–184. doi: 10.1007/BFb0102310. [DOI] [PubMed] [Google Scholar]
  75. Singh RP, al-Rubeai M, Gregory CD, Emery AN. Cell death in bioreactors: a role for apoptosis. Biotechnol Bioeng. 1994;44:720–726. doi: 10.1002/bit.260440608. [DOI] [PubMed] [Google Scholar]
  76. Singh RP, Finka G, Emery AN, al-Rubeai M. Apoptosis and its control in cell cultures systems. Cytotechnology. 1997;23:87–93. doi: 10.1023/A:1007971703392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Sitailo LA, Tibudan SS, Denning MF. Activation of caspase-9 is required for UV-induced apoptosis of human keratinocytes. J Biol Chem. 2002;277:19346–19352. doi: 10.1074/jbc.M200401200. [DOI] [PubMed] [Google Scholar]
  78. Strasser A, O’Connor L, Dixit VM. Apoptosis signaling. Annu Rev Biochem. 2000;69:217–245. doi: 10.1146/annurev.biochem.69.1.217. [DOI] [PubMed] [Google Scholar]
  79. Tey BT, Al-Rubeai M. Suppression of apoptosis in perfusion culture of Myeloma NS0 cells enhances cell growth but reduces antibody productivity. Apoptosis. 2004;9:843–852. doi: 10.1023/B:APPT.0000045792.63249.5a. [DOI] [PubMed] [Google Scholar]
  80. Tey BT, Singh RP, Piredda L, Piacentini M, Al-Rubeai M. Bcl-2 mediated suppression of apoptosis in myeloma NS0 cultures. J Biotechnol. 2000a;79:147–159. doi: 10.1016/S0168-1656(00)00223-6. [DOI] [PubMed] [Google Scholar]
  81. Tey BT, Singh RP, Piredda L, Piacentini M, Al-Rubeai M. Influence of bcl-2 on cell death during the cultivation of a Chinese hamster ovary cell line expressing a chimeric antibody. Biotechnol Bioeng. 2000b;68:31–43. doi: 10.1002/(SICI)1097-0290(20000405)68:1<31::AID-BIT4>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
  82. Vives J, Juanola S, Cairo JJ, Prats E, Cornudella L, Godia F. Protective effect of viral homologues of bcl-2 on hybridoma cells under apoptosis-inducing conditions. Biotechnol Prog. 2003;19:84–89. doi: 10.1021/bp0255715. [DOI] [PubMed] [Google Scholar]
  83. Weinberg RL, Veprintsev DB, Fersht AR. Cooperative binding of tetrameric p53 to DNA. J Mol Biol. 2004;341:1145–1159. doi: 10.1016/j.jmb.2004.06.071. [DOI] [PubMed] [Google Scholar]
  84. White C, Li C, Yang J, Petrenko NB, Madesh M, Thompson CB, Foskett JK. The endoplasmic reticulum gateway to apoptosis by Bcl-X(L) modulation of the InsP3R. Nat Cell Biol. 2005;7:1021–1028. doi: 10.1038/ncb1302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Yang E, Zha J, Jockel J, Boise LH, Thompson CB, Korsmeyer SJ. Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell. 1995;80(2):285–291. doi: 10.1016/0092-8674(95)90411-5. [DOI] [PubMed] [Google Scholar]
  86. Zha J, Weiler S, Oh KJ, Wei MC, Korsmeyer SJ. Posttranslational N-myristoylation of BID as a molecular switch for targeting mitochondria and apoptosis. Science. 2000;290:1761–1765. doi: 10.1126/science.290.5497.1761. [DOI] [PubMed] [Google Scholar]
  87. Zhang H (2006) p53 plays a central role in UVA and UVB induced cell damage and apoptosis in melanoma cells. Cancer Lett [DOI] [PubMed]
  88. Zhang X, Li J, Sejas DP, Pang Q. The ATM/p53/p21 pathway influences cell fate decision between apoptosis and senescence in reoxygenated hematopoietic progenitor cells. J Biol Chem. 2005;280:19635–19640. doi: 10.1074/jbc.M502262200. [DOI] [PubMed] [Google Scholar]
  89. Zong WX, Li C, Hatzivassiliou G, Lindsten T, Yu QC, Yuan J, Thompson CB. Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis. J Cell Biol. 2003;162:59–69. doi: 10.1083/jcb.200302084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Zong WX, Lindsten T, Ross AJ, MacGregor GR, Thompson CB. BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Genes Dev. 2001;15:1481–1486. doi: 10.1101/gad.897601. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Cytotechnology are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES