Skip to main content
Cytotechnology logoLink to Cytotechnology
. 2005 Oct 28;50(1-3):57–76. doi: 10.1007/s10616-005-4537-x

Optimisation of the Cellular Metabolism of Glycosylation for Recombinant Proteins Produced by Mammalian Cell Systems

M Butler 1,
PMCID: PMC3476007  PMID: 19003071

Abstract

Many biopharmaceuticals are now produced as secreted glycoproteins from mammalian cell culture. The glycosylation profile of these proteins is essential to ensure structural stability and biological and clinical activity. However, the ability to control the glycosylation is limited by our understanding of the parameters that affect the heterogeneity of added glycan structures. It is clear that the glycosylation process is affected by a number of factors including the 3-dimensional structure of the protein, the enzyme repertoire of the host cell, the transit time in the Golgi and the availability of intracellular sugar-nucleotide donors. From a process development perspective there are many culture parameters that can be controlled to enable a consistent glycosylation profile to emerge from each batch culture. A further, but more difficult goal is to control the culture conditions to enable the enrichment of specific glycoforms identified with desirable biological activities. The purpose of this paper is to discuss the cellular metabolism associated with protein glycosylation and review the attempts to manipulate, control or engineer this metabolism to allow the expression of human glycosylation profiles in producer lines such as genetically engineered Chinese hamster ovary (CHO) cells.

Keywords: Antennarity, CHO cells, Fucosylation, Galactosylation, Glycoprotein, Glycosylation, Golgi, N-glycan, O-glycan, Sequon, Sialylation

Glossary

ADCC

antibody-mediated cytotoxicity

BHK

baby hamster kidney (cells)

C2GnT

core 2 GlcNAC transferase (UDP-GlcNAc: Galβ1,3GalNAc-R β1,6-N-acetyl glucosaminyl transferase)

CHO

Chinese hamster ovary (cells)

CMP

cytidine monophosphate

DO

dissolved oxygen

EPO

erythropoietin

ER

endoplasmic reticulum

FT

fucosyl transferase

G0

agalactosylated glycans

G1

monogalactosylated glycans

G2

digalactosylated glycans

GalNAc

N-acetyl galactosamine

GDM

GDP mannose 4,6 dehydratase

GDP

guanosine diphosphate

GFAT

glutamine: fructose 6-phosphate amidotransferase

GlcNAc

N-acetyl glucosamine

GnT

N-acetyl glucosaminyl transferase

HIV

human immunodeficiency virus

IFN

interferon

IgG

immunoglobulin

LAMP

lysosomal membrane glycoprotein

ManNAc

N-acetyl mannosamine

mPL-I

mouse placental lactogen I

NANA

N-acetyl-neuraminic acid

NGNA

N-glycolyl-neuraminic acid

OST

oligosaccharyltransferase

ST

sialyl transferase

ST3Gal1

sialyl transferase 3 (CMP-sialic acid: Galβ1,3GalNAc2,3 sialyl transferase)

TIMP

tissue inhibitors of metalloproteinases

t-PA

tissue plasminogen activator

UDP

uridine diphosphate

UTP

uridine triphosphate

References

  1. Allen S., Naim H.Y., Bulleid N.J. Intracellular folding of tissue-type plasminogen activator. Effects of disulfide bond formation on N-linked glycosylation and secretion. J. Biol. Chem. 1995;270:4797–4804. doi: 10.1074/jbc.270.9.4797. [DOI] [PubMed] [Google Scholar]
  2. Andersen D.C. Cell Culture Effects on the Glycosylation of Therapeutic Proteins. Boston: Bioprocess International. IBC Life Sciences; 2004. [Google Scholar]
  3. Andersen D.C., Bridges T., Gawlitzek M., Hoy C. Multiple cell culture factors can affect the glycosylation of Asn-184 in CHO-produced tissue-type plasminogen activator. Biotechnol. Bioeng. 2000;70:25–31. doi: 10.1002/1097-0290(20001005)70:1<25::AID-BIT4>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  4. Andersen D.C., Goochee C.F. The effect of cell-culture conditions on the oligosaccharide structures of secreted glycoproteins. Curr. Opin. Biotechnol. 1994;5:546–549. doi: 10.1016/0958-1669(94)90072-8. [DOI] [PubMed] [Google Scholar]
  5. Andersen D.C., Goochee C.F. The effect of ammonia on the O-linked glycosylation of granulocyte colony-stimulating factor produced by Chinese hamster ovary cells. Biotechnol. Bioeng. 1995;47:96–105. doi: 10.1002/bit.260470112. [DOI] [PubMed] [Google Scholar]
  6. Andersen D.C., Krummen L. Recombinant protein expression for therapeutic applications. Curr. Opin. Biotechnol. 2002;13:117–123. doi: 10.1016/S0958-1669(02)00300-2. [DOI] [PubMed] [Google Scholar]
  7. Angata T., Varki A. Chemical diversity in the sialic acids and related α-keto acids: an evolutionary perspective. Chem. Rev. 2002;102:439–469. doi: 10.1021/cr000407m. [DOI] [PubMed] [Google Scholar]
  8. Apweiler R., Hermjakob H., Sharon N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim. Biophys. Acta. 1999;1473:4–8. doi: 10.1016/s0304-4165(99)00165-8. [DOI] [PubMed] [Google Scholar]
  9. Backstrom M., Link T., Olson F.J., Karlsson H., Graham R., Picco G., Burchell J., Taylor-Papadimitriou J., Noll T., Hansson G.C. Recombinant MUC1 mucin with a breast cancer-like O-glycosylation produced in large amounts in Chinese-hamster ovary cells. Biochem. J. 2003;376:677–686. doi: 10.1042/BJ20031130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Baker K.N., Rendall M.H., Hills A.E., Hoare M., Freedman R.B., James D.C. Metabolic control of recombinant protein N-glycan processing in NS0 and CHO cells. Biotechnol. Bioeng. 2001;73:188–202. doi: 10.1002/bit.1051. [DOI] [PubMed] [Google Scholar]
  11. Barasch J., Kiss B., Prince A., Saiman L., Gruenert D., al-Awqati Q. Defective acidification of intracellular organelles in cystic fibrosis. Nature. 1991;352(6330):70–73. doi: 10.1038/352070a0. [DOI] [PubMed] [Google Scholar]
  12. Borys M.C., Linzer D.I., Papoutsakis E.T. Culture pH affects expression rates and glycosylation of recombinant mouse placental lactogen proteins by Chinese hamster ovary (CHO) cells. Biotechnology (NY) 1993;11:720–724. doi: 10.1038/nbt0693-720. [DOI] [PubMed] [Google Scholar]
  13. Bragonzi A., Distefano G., Buckberry L.D., Acerbis G., Foglieni C., Lamotte D., Campi G., Marc A., Soria M.R., Jenkins N., Monaco L. A new Chinese hamster ovary cell line expressing alpha2,6-sialyltransferase used as universal host for the production of human-like sialylated recombinant glycoproteins. Biochim. Biophys. Acta. 2000;1474(3):273–282. doi: 10.1016/s0304-4165(00)00023-4. [DOI] [PubMed] [Google Scholar]
  14. Breton C., Oriol R., Imberty A. Conserved structural features in eukaryotic and prokaryotic fucosyltransferases. Glycobiology. 1998;8:87–94. doi: 10.1093/glycob/8.1.87. [DOI] [PubMed] [Google Scholar]
  15. Butler M. Animal Cell Culture and Technology. 2. Oxford: Bios Scientific; 2004. [Google Scholar]
  16. Butler M., Quelhas D., Critchley A.J., Carchon H., Hebestreit H.F., Hibbert R.G., Vilarinho L., Teles E., Matthijs G., Schollen Argibay P., Harvey D.J., Dwek R.A., Jaeken J., Rudd P.M. Detailed glycan analysis of serum glycoproteins of patients with congenital disorders of glycosylation indicates the specific enzyme defect andcoupled with proteomics, provides an insight into pathogenesis. Glycobiology. 2003;13:601–622. doi: 10.1093/glycob/cwg079. [DOI] [PubMed] [Google Scholar]
  17. Butler M., Spier R.E. The effects of glutamine utilisation and ammonia production on the growth of BHK cells in microcarrier cultures. J. Biotechnol. 1984;1:187–196. doi: 10.1016/0168-1656(84)90004-X. [DOI] [Google Scholar]
  18. Chee Furng Wong D., Tin Kam Wong K., Tang Goh L., Kiat Heng C., Gek Sim Yap M. Impact of dynamic online fed-batch strategies on metabolismproductivity and N-glycosylation quality in CHO cell cultures. Biotechnol. Bioeng. 2005;89:164–177. doi: 10.1002/bit.20317. [DOI] [PubMed] [Google Scholar]
  19. Chotigeat W., Watanapokasin Y., Mahler S., Gray P.P. Role of environmental conditions on the expression levels, glycoform pattern and levels of sialyltransferase for hFSH produced by recombinant CHO cells. Cytotechnology. 1994;15:217–221. doi: 10.1007/BF00762396. [DOI] [PubMed] [Google Scholar]
  20. Clark K.J., Griffiths J., Bailey K.M., Harcum S.W. Gene-expression profiles for five key glycosylation genes for galactose-fed CHO cells expressing recombinant IL-4/13 cytokine trap. Biotechnol. Bioeng. 2005;90:568–577. doi: 10.1002/bit.20439. [DOI] [PubMed] [Google Scholar]
  21. Curling E.M., Hayter P.M., Baines A.J., Bull A.T., Gull K., Strange P.G., Jenkins N. Recombinant human interferon-gamma. Differences in glycosylation and proteolytic processing lead to heterogeneity in batch culture. Biochem. J. 1990;272:333–337. doi: 10.1042/bj2720333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Davidson S.K., Hunt L.A. Sindbis virus glycoproteins are abnormally glycosylated in Chinese hamster ovary cells deprived of glucose. J. Gen. Virol. 1985;66:1457–1468. doi: 10.1099/0022-1317-66-7-1457. [DOI] [PubMed] [Google Scholar]
  23. Davies J., Jiang L., Pan L.Z., LaBarre M.J., Anderson D., Reff M. Expression of GnTIII in a recombinant anti-CD20 CHO production cell line: Expression of antibodies with altered glycoforms leads to an increase in ADCC through higher affinity for FC gamma RIII. Biotechnol. Bioeng. 2001;74:288–294. doi: 10.1002/bit.1119. [DOI] [PubMed] [Google Scholar]
  24. Dawson G., Moskal J.R., Dawson S.A. Transfection of 2,6 and 2,3-sialyltransferase genes and GlcNAc-transferase genes into human glioma cell line U-373 MG affects glycoconjugate expression and enhances cell death. J. Neurochem. 2004;89(6):1436–1444. doi: 10.1111/j.1471-4159.2004.02435.x. [DOI] [PubMed] [Google Scholar]
  25. Doyle C., Butler M. The effect of pH on the toxicity of ammonia to a murine hybridoma. J. Biotechnol. 1990;15:91–100. doi: 10.1016/0168-1656(90)90053-E. [DOI] [PubMed] [Google Scholar]
  26. Egrie J.C., Dwyer E., Browne J.K., Hitz A., Lykos M.A. Darbepoetin alfa has a longer circulating half-life and greater in vivo potency than recombinant human erythropoietin. Exp. Hematol. 2003;31:290–299. doi: 10.1016/S0301-472X(03)00006-7. [DOI] [PubMed] [Google Scholar]
  27. Ellgaard L., Helenius A. Quality control in the endoplasmic reticulum. Nat. Rev. Mol. Cell Biol. 2003;4(3):181–191. doi: 10.1038/nrm1052. [DOI] [PubMed] [Google Scholar]
  28. Erbayraktar S., Grasso G., Sfacteria A., Xie Q.W., Coleman T., Kreilgaard M., Torup L., Sager T., Erbayraktar Z., Gokmen N., Yilmaz O., Ghezzi P., Villa P., Fratelli M., Casagrande S., Leist M., Helboe L., Gerwein J., Christensen S., Geist M.A., Pedersen L.O., Cerami-Hand C., Wuerth J.P., Cerami A., Brines M. Asialoerythropoietin is a nonerythropoietic cytokine with broad neuroprotective activity in vivo. Proc. Natl. Acad. Sci. U S A. 2003;100:6741–6746. doi: 10.1073/pnas.1031753100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Follstad B.D. 2004. A Method for Increasing Glycoprotein Sialylation in Mammalian Cells. Cell Culture Engineering IX Poster.
  30. Freeze H.H.J. Sweet solution: sugars to the rescue. Cell Biol. 2002;158:615–616. doi: 10.1083/jcb.200207155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Gavel Y., Heijne G. Sequence differences between glycosylated and non-glycosylated Asn-X-Thr/Ser acceptor sites: implications for protein engineering. Protein Eng. 1990;3(5):433–442. doi: 10.1093/protein/3.5.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Gawlitzek M., Valley U., Nimtz M., Wagner R., Conradt H.S. Characterization of changes in the glycosylation pattern of recombinant proteins from BHK-21 cells due to different culture conditions. J. Biotech. 1995;42:117–131. doi: 10.1016/0168-1656(95)00065-X. [DOI] [PubMed] [Google Scholar]
  33. Gawlitzek M., Valley U., Wagner R. Ammonium ion and glucosamine dependent increases of oligosaccharide complexity in recombinant glycoproteins secreted from cultivated BHK-21 cells. Biotechnol. Bioeng. 1998;57:518–528. doi: 10.1002/(SICI)1097-0290(19980305)57:5<518::AID-BIT3>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
  34. Goochee C.F. 1992. Bioprocess factors affecting glycoprotein oligosaccharide structure. Dev. Biol. Stand. 76: 95–104.Review. [PubMed]
  35. Goto M., Akai K., Murakami A., Hashimoto C., Tsuda E., Ueda M., Kawanishi G., Takahashi N., Ishimoto A., Chiba H., Sasaki R. Production of recombinant human erythropoietin in mammalian cells: Host–cell dependency of the biological activity of the cloned glycoprotein. Bio/Technology. 1988;6:67–71. doi: 10.1038/nbt0188-67. [DOI] [Google Scholar]
  36. Grabenhorst E., Hoffmann A., Nimtz M., Zettlmeissl G., Conradt H.S. Construction of stable BHK-21 cells coexpressing human secretory glycoprotein and human Gal (β1–4)GlcNAc-R α2,6-sialyltransferase. Eur. J. Biochem. 1995;232:718–725. doi: 10.1111/j.1432-1033.1995.718zz.x. [DOI] [PubMed] [Google Scholar]
  37. Grammatikos S.I., Valley U., Nimtz M., Conradt H.S., Wagner R. Intracellular UDP-N-acetylhexosamine pool affects N-glycan complexity: a mechanism of ammonium action on protein glycosylation. Biotechnol. Prog. 1998;14:410–419. doi: 10.1021/bp980005o. [DOI] [PubMed] [Google Scholar]
  38. Gu X., Wang D.I. Improvement of interferon-gamma sialylation in Chinese hamster ovary cell culture by feeding of N-acetylmannosamine. Biotechnol. Bioeng. 1998;58(6):642–648. doi: 10.1002/(SICI)1097-0290(19980620)58:6<642::AID-BIT10>3.0.CO;2-9. [DOI] [PubMed] [Google Scholar]
  39. Hayter P.M., Curling E.M.A., Baines A.J., Jenkins N., Salmon I., Strange P.G., Tong J.M., Bull A.T. Glucose-limited chemostat culture of chinese hamster ovary cells producing recombinant human interferon-γ. Biotechnol. Bioeng. 1992;39:327–335. doi: 10.1002/bit.260390311. [DOI] [PubMed] [Google Scholar]
  40. Heidemann R., Lutkemeyer D., Buntemeyer H., Lehmann J. Effects of dissolved oxygen levels and the role of extra- and intracellular amino acid concentration upon the metabolism of mammalian cell lines during batch and continuous cultures. Cytotechnology. 1998;26:185–197. doi: 10.1023/A:1007917409455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Hirschberg C.B. Golgi nucleotide sugar transport and leukocyte adhesion deficiency II. J. Clin. Invest. 2001;108:3–6. doi: 10.1172/JCI13480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Hokke C.H., Bergwerff A.A., Dedem G.W., Kamerling J.P., Vliegenthart J.F. Structural analysis of the sialylated N- and O-linked carbohydrate chains of recombinant human erythropoietin expressed in Chinese hamster ovary cells. Sialylation patterns and branch location of dimeric N-acetyllactosamine units. Eur. J. Biochem. 1995;228:981–1008. doi: 10.1111/j.1432-1033.1995.tb20350.x. [DOI] [PubMed] [Google Scholar]
  43. Jan D.C., Petch D.A., Huzel N., Butler M. The effect of dissolved oxygen on the metabolic profile of a murine hybridoma grown in serum-free medium in continuous cultures. Biotech. Bioeng. 1997;54:153–164. doi: 10.1002/(SICI)1097-0290(19970420)54:2<153::AID-BIT7>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
  44. Jenkins N., Curling E.M. Glycosylation of recombinant proteins: problems and prospects. Enzyme Microb. Technol. 1994;16:354–364. doi: 10.1016/0141-0229(94)90149-X. [DOI] [PubMed] [Google Scholar]
  45. Jenkins N., Parekh R.B., James D.C. Getting the glycosylation right: implications for the biotechnology industry. Nat. Biotechnol. 1996;14:975–981. doi: 10.1038/nbt0896-975. [DOI] [PubMed] [Google Scholar]
  46. Jones M.B., Teng H., Rhee J.K., Lahar N., Baskaran G., Yarema K.J. Characterization of the cellular uptake and metabolic conversion of acetylated N-acetylmannosamine (ManNAc) analogues to sialic acids. Biotechnol. Bioeng. 2004;85(4):394–405. doi: 10.1002/bit.10901. [DOI] [PubMed] [Google Scholar]
  47. Kagawa Y., Takasaki S., Utsumi J., Hosoi K., Shimizu H., Kochibe N., Kobata A. Comparative study of the asparagine-linked sugar chains of natural human interferon-beta 1 and recombinant human interferon-beta 1 produced by three different mammalian cells. J. Biol. Chem. 1988;263:17508–17515. [PubMed] [Google Scholar]
  48. Kornfeld R., Kornfeld S. Assembly of asparagine-linked oligosaccharides. Ann. Rev. Biochem. 1985;54:631–664. doi: 10.1146/annurev.bi.54.070185.003215. [DOI] [PubMed] [Google Scholar]
  49. Kunkel J.P., Jan D.C., Jamieson J.C., Butler M. Dissolved oxygen concentration in serum-free continuous culture affects N-linked glycosylation of a monoclonal antibody. J. Biotechnol. 1998;62:55–71. doi: 10.1016/S0168-1656(98)00044-3. [DOI] [PubMed] [Google Scholar]
  50. Kunkel J.P., Yan W.Y., Butler M. and Jamieson J.C. 2003. Decreased monoclonal IgG1 galactosylation at reduced dissolved oxygen concentration is not a result of lowered galactosyltransferase activity in vitro. Society for Glycobiology Meeting, San Diego, CA, Glycobiology 13: 875.
  51. Leonard C.K., Spellman M.W., Riddle L., Harris R.J., Thomas J.N., Gregory T.J. Assignment of intrachain disulfide bonds and characterization of potential glycosylation sites of the type 1 recombinant human immunodeficiency virus envelope glycoprotein (gp120) expressed in Chinese hamster ovary cells. J. Biol. Chem. 1990;265:10373–10382. [PubMed] [Google Scholar]
  52. Longmore G.D., Schachter H. Product-identification and substrate-specificity studies of the GDP-l-fucose:2-acetamido-2-deoxy-beta-d-glucoside (FUC goes to Asn-linked GlcNAc) 6-alpha-l-fucosyltransferase in a Golgi-rich fraction from porcine liver. Carbohydr. Res. 1982;100:365–392. doi: 10.1016/S0008-6215(00)81049-6. [DOI] [PubMed] [Google Scholar]
  53. Meynial-Salles I., Combes D. In vitro glycosylation of proteins: an enzymatic approach. J. Biotechnol. 1996;46:1–14. doi: 10.1016/0168-1656(95)00174-3. [DOI] [PubMed] [Google Scholar]
  54. Miyoshi E., Noda K., Ko J.H., Ekuni A., Kitada T., Uozumi N., Ikeda Y., Matsuura N., Sasaki Y., Hayashi N., Hori M., Taniguchi N. Overexpression of alpha 1–6 fucosyltransferase in hepatoma cells suppresses intrahepatic metastasis after splenic injection in athymic mice. Cancer Res. 1999;59:2237–2243. [PubMed] [Google Scholar]
  55. Nabi I.R., Dennis J.W. The extent of polylactosamine glycosylation of MDCK LAMP-2 is determined by its Golgi residence time. Glycobiology. 1998;8:947–953. doi: 10.1093/glycob/8.9.947. [DOI] [PubMed] [Google Scholar]
  56. Narhi L.O., Arakawa T., Aoki K.H., Elmore R., Rohde M.F., Boone T., Strickland T.W. The effect of carbohydrate on the structure and stability of erythropoietin. J. Biol. Chem. 1991;266:23022–23026. [PubMed] [Google Scholar]
  57. Noda K., Miyoshi E., Uozumi N., Gao C.X., Suzuki K., Hayashi N., Hori M., Taniguchi N. High expression of alpha-1–6 fucosyltransferase during rat hepatocarcinogenesis. Int. J. Cancer. 1998;75:444–450. doi: 10.1002/(SICI)1097-0215(19980130)75:3<444::AID-IJC19>3.0.CO;2-8. [DOI] [PubMed] [Google Scholar]
  58. Nyberg G.B., Balcarcel R.R., Follstad B.D., Stephanopoulos G., Wang D.I. Metabolic effects on recombinant interferon-gamma glycosylation in continuous culture of Chinese hamster ovary cells. Biotechnol. Bioeng. 1999;62:336–347. doi: 10.1002/(SICI)1097-0290(19990205)62:3<336::AID-BIT10>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
  59. Ohyama C., Smith P.L., Angata K., Fukuda M.N., Lowe J.B., Fukuda M. Molecular cloning and expression of GDP-d-mannose-4,6-dehydratasea key enzyme for fucose metabolism defective in Lec13 cells. J. Biol. Chem. 1998;273:14582–14587. doi: 10.1074/jbc.273.23.14582. [DOI] [PubMed] [Google Scholar]
  60. Okazaki A., Shoji-Hosaka E., Nakamura K., Wakitani M., Uchida K., Kakita S., Tsumoto K., Kumagai I., Shitara K. Fucose depletion from human IgG1 oligosaccharide enhances binding enthalpy and association rate between IgG1 and FcgammaRIIIa. J. Mol. Biol. 2004;336:1239–1249. doi: 10.1016/j.jmb.2004.01.007. [DOI] [PubMed] [Google Scholar]
  61. Pels Rijcken W.R., Overdijk B., Eijnden D.H., Ferwerda W. The effect of increasing nucleotide-sugar concentrations on the incorporation of sugars into glycoconjugates in rat hepatocytes. Biochem. J. 1995;305:865–870. doi: 10.1042/bj3050865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Perlman S., Hazel B., Christiansen J., Gram-Nielsen S., Jeppesen C.B., Andersen K.V., Halkier T., Okkels S., Schambye H.T. Glycosylation of an N-terminal extension prolongs the half-life and increases the in vivo activity of follicle stimulating hormone. J. Clin. Endocrinol. Metab. 2003;88:3227–3235. doi: 10.1210/jc.2002-021201. [DOI] [PubMed] [Google Scholar]
  63. Petrescu A.J., Milac A.L., Petrescu S.M., Dwek R.A., Wormald M.R. Statistical analysis of the protein environment of N-glycosylation sites: implications for occupancy, structureand folding. Glycobiology. 2004;14:103–114. doi: 10.1093/glycob/cwh008. [DOI] [PubMed] [Google Scholar]
  64. Prati E.G., Matasci M., Suter T.B., Dinter A., Sburlati A.R., Bailey J.E. Engineering of coordinated up- and down-regulation of two glycosyltransferases of the O-glycosylation pathway in Chinese hamster ovary (CHO) cells. Biotechnol. Bioeng. 2000;68(3):239–244. doi: 10.1002/(SICI)1097-0290(20000505)68:3<239::AID-BIT1>3.0.CO;2-7. [DOI] [PubMed] [Google Scholar]
  65. Rademacher T.W., Jaques A., Williams P.J. The defining characteristics of immunoglobulin glycosylation. In: Isenberg D.A., Rademacher T.W., editors. Abnormalities of IgG Glycosylation and Immunological Disorders. NY: publ. Wiley; 1996. pp. 1–44. [Google Scholar]
  66. Raju T.S., Briggs J.B., Borge S.M., Jones A.J. Species-specific variation in glycosylation of IgG: evidence for the species-specific sialylation and branch-specific galactosylation and importance for engineering recombinant glycoprotein therapeutics. Glycobiology. 2000;10:477–486. doi: 10.1093/glycob/10.5.477. [DOI] [PubMed] [Google Scholar]
  67. Raju T.S., Briggs J.B., Chamow S.M., Winkler M.E., Jones A.J. Glycoengineering of therapeutic glycoproteins: in vitro galactosylation and sialylation of glycoproteins with terminal N-acetylglucosamine and galactose residues. Biochemistry. 2001;40:8868–8876. doi: 10.1021/bi010475i. [DOI] [PubMed] [Google Scholar]
  68. Rearick J.I., Chapman A., Kornfeld S. Glucose starvation alters lipid-linked oligosaccharide biosynthesis in Chinese hamster ovary cells. J. Biol. Chem. 1981;256:6255–6261. [PubMed] [Google Scholar]
  69. Restelli V., Butler M. The effect of cell culture parameters on protein glycosylation. In: Al-Rubeai M, editor. Glycosylation, vol 3. Dordrecht: Kluwer; 2002. pp. 61–92. [Google Scholar]
  70. Reuter G. and Gabius H.J. 1999. Eukaryotic glycosylation: whim of nature or multipurpose tool? Cell Mol. Life Sci. 55: 368–422.Review. [DOI] [PMC free article] [PubMed]
  71. Rijcken P.W.R., Overdijk B., Eijnden D.H., Ferwerda W. The effect of increasing nucleotide-sugar concentrations on the incorporation of sugars into glycoconjugates in rat hepatocytes. Biochem. J. 1995;305:865–870. doi: 10.1042/bj3050865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Rothman R.J., Warren L., Vliegenthart J.F., Hard K.J. Clonal analysis of the glycosylation of immunoglobulin G secreted by murine hybridomas. Biochemistry. 1989;28:1377–1384. doi: 10.1021/bi00429a065. [DOI] [PubMed] [Google Scholar]
  73. Rudd P.M., Dwek R.A. Glycosylation: heterogeneity and the 3D structure of proteins. Critical Rev. Biochem. Mol. Biol. 1997;32:1–100. doi: 10.3109/10409239709085144. [DOI] [PubMed] [Google Scholar]
  74. Saitoh A., Aoyagi Y., Asakura H. Structural analysis on the sugar chains of human alpha 1-antitrypsin: presence of fucosylated biantennary glycan in hepatocellular carcinoma. Arch. Biochem. Biophys. 1993;303:281–287. doi: 10.1006/abbi.1993.1284. [DOI] [PubMed] [Google Scholar]
  75. Sburlati A.R., Umana P., Prati E.G., Bailey J.E. Synthesis of bisected glycoforms of recombinant IFN-beta by overexpression of beta-1,4-N-acetylglucosaminyltransferase III in Chinese hamster ovary cells. Biotechnol. Prog. 1998;14(2):189–192. doi: 10.1021/bp970118s. [DOI] [PubMed] [Google Scholar]
  76. Schweikart F., Jones R., Jaton J.C., Hughes G.J. Rapid structural characterisation of a murine monoclonal IgA alpha chain: heterogeneity in the oligosaccharide structures at a specific site in samples produced in different bioreactor systems. J. Biotechnol. 1999;69:191–201. doi: 10.1016/S0168-1656(99)00039-5. [DOI] [PubMed] [Google Scholar]
  77. Sears P., Wong C.H.. Enzyme action in glycoprotein synthesis. Cell. Mol. Life Sci. 1998;54:223–252. doi: 10.1007/s000180050146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Seppala R., Lehto V.P., Gahl W.A. Mutations in the human UDP-N-acetylglucosamine 2-epimerase gene define the disease sialuria and the allosteric site of the enzyme. Am. J. Hum. Genet. 1999;64:1563–1569. doi: 10.1086/302411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Sheeley D.M., Merrill B.M., Taylor L.C. Characterization of monoclonal antibody glycosylation: comparison of expression systems and identification of terminal alpha-linked galactose. Anal. Biochem. 1997;247:102–110. doi: 10.1006/abio.1997.2036. [DOI] [PubMed] [Google Scholar]
  80. Shelikoff M., Sinskey A.J., Stephanopoulos G. The effect of protein synthesis inhibitors on the glycosylation site occupancy of recombinant human prolactin. Cytotechnology. 1994;15:195–208. doi: 10.1007/BF00762394. [DOI] [PubMed] [Google Scholar]
  81. Shields R.L., Lai J., Keck R., O’Connell L.Y., Hong K., Meng Y.G., Weikert S.H., Presta L.G. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J. Biol. Chem. 2002;277:26733–26740. doi: 10.1074/jbc.M202069200. [DOI] [PubMed] [Google Scholar]
  82. Shinkawa T., Nakamura K., Yamane N., Shoji-Hosaka E., Kanda Y., Sakurada M., Uchida K., Anazawa H., Satoh M., Yamasaki M., Hanai N., Shitara K. The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J. Biol. Chem. 2003;278:3466–3473. doi: 10.1074/jbc.M210665200. [DOI] [PubMed] [Google Scholar]
  83. Shriver Z., Raguram S., Sasisekharan R. Glycomics: a pathway to a class of new and improved therapeutics. Nat. Rev. Drug Discov. 2004;3:863–873. doi: 10.1038/nrd1521. [DOI] [PubMed] [Google Scholar]
  84. Spellman M.W. Carbohydrate characterization of recombinant glycoproteins of pharmaceutical interest. Anal. Chem. 1990;62:1714–1722. doi: 10.1021/ac00216a002. [DOI] [PubMed] [Google Scholar]
  85. Srikrishna G., Varki N.M., Newell P.C., Varki A., Freeze H.H. An IgG monoclonal antibody against Dictyostelium discoideum glycoproteins specifically recognizes Fucalpha1,6GlcNAcbeta in the core of N-linked glycans. Localized expression of core-fucosylated glycoconjugates in human tissues. J. Biol. Chem. 1997;272:25743–25752. doi: 10.1074/jbc.272.41.25743. [DOI] [PubMed] [Google Scholar]
  86. Stark N.J., Heath E.C. Glucose-dependent glycosylation of secretory glycoprotein in mouse myeloma cells. Arch. Biochem. Biophys. 1979;192:599–609. doi: 10.1016/0003-9861(79)90131-0. [DOI] [PubMed] [Google Scholar]
  87. Storring P.L. Assaying glycoprotein hormones–the influence of glycosylation on immunoreactivity. Trends Biotechnol. 1992;10:427–432. doi: 10.1016/0167-7799(92)90292-4. [DOI] [PubMed] [Google Scholar]
  88. Stubbs H.J., Lih J.J., Gustafson T.L., Rice K.G. Influence of core fucosylation on the flexibility of a biantennary N-linked oligosaccharide. Biochemistry. 1996;35:937–947. doi: 10.1021/bi9513719. [DOI] [PubMed] [Google Scholar]
  89. Sturla L., Etzioni A., Bisso A., Zanardi D., Flora G., Silengo L., Flora A., Tonetti M. Defective intracellular activity of GDP-d-mannose-4,6-dehydratase in leukocyte adhesion deficiency type II syndrome. FEBS Lett. 1998;429:274–278. doi: 10.1016/S0014-5793(98)00615-2. [DOI] [PubMed] [Google Scholar]
  90. Tachibana H., Kim J., Shivahata S. Building high affinity human antibodies by altering the glycosylation on the light chain variable region in N-acetyl glucosamine-supplemented hybridoms cultures. Cytotechnology. 1997;23:151–159. doi: 10.1023/A:1007980032042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Takahashi T., Ikeda Y., Miyoshi E., Yaginuma Y., Ishikawa M., Taniguchi N. Alpha1,6fucosyltransferase is highly and specifically expressed in human ovarian serous adenocarcinomas. Int. J. Cancer. 2000;88:914–919. doi: 10.1002/1097-0215(20001215)88:6<914::AID-IJC12>3.0.CO;2-1. [DOI] [PubMed] [Google Scholar]
  92. Takeuchi M., Takasaki S., Miyazaki H., Kato T., Hoshi S., Kochibe N., Kobata A. Comparative study of the asparagine-linked sugar chains of human erythropoietins purified from urine and the culture medium of recombinant Chinese hamster ovary cells. J. Biol. Chem. 1988;263:3657–3663. [PubMed] [Google Scholar]
  93. Thotakura N.R., Desai R.K., Bates L.G., Cole E.S., Pratt B.M., Weintraub B.D. Biological activity and metabolic clearance of a recombinant human thyrotropin produced in Chinese hamster ovary cells. Endocrinology. 1991;128:341–348. doi: 10.1210/endo-128-1-341. [DOI] [PubMed] [Google Scholar]
  94. Tonetti M., Sturla L., Bisso A., Benatti U., Flora A. Synthesis of GDP-l-fucose by the human FX protein. J. Biol. Chem. 1996;271:27274–27279. doi: 10.1074/jbc.271.44.27274. [DOI] [PubMed] [Google Scholar]
  95. Umana P., Bailey J.E. A mathematical model of N-linked glycoform biosynthesis. Biotechnol. Bioeng. 1997;55:890–908. doi: 10.1002/(SICI)1097-0290(19970920)55:6<890::AID-BIT7>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  96. Umana P., Jean-Mairet J., Moudry R., Amstutz H., Bailey J.E. Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat. Biotechnol. 1999;17:176–180. doi: 10.1038/6179. [DOI] [PubMed] [Google Scholar]
  97. Uozumi N., Yanagidani S., Miyoshi E., Ihara Y., Sakuma T., Gao C.X., Teshima T., Fujii S., Shiba T., Taniguchi N. Purification and cDNA cloning of porcine brain GDP-L-Fuc:N-acetyl-beta-d-glucosaminide alpha1–6 fucosyltransferase. J. Biol. Chem. 1996;271:27810–27817. doi: 10.1074/jbc.271.44.27810. [DOI] [PubMed] [Google Scholar]
  98. Valley U., Nimtz M., Conradt H.S., Wagner R. Incorporation of ammonium into intracellular UDP-activated N-acetylhexosamines and into carbohydrate structures in glycoproteins. Biotechnol. Bioeng. 1999;64(4):401–417. doi: 10.1002/(SICI)1097-0290(19990820)64:4<401::AID-BIT3>3.0.CO;2-M. [DOI] [PubMed] [Google Scholar]
  99. Steen P., Rudd P.M., Dwek R.A., Opdenakker G. Concepts and principles of O-linked glycosylation. Crit. Rev. Biochem. Mol. Biol. 1998;33(3):151–208. doi: 10.1080/10409239891204198. [DOI] [PubMed] [Google Scholar]
  100. Voynow J.A., Kaiser R.S., Scanlin T.F., Glick M.C. Purification and characterization of GDP-l-fucose-N-acetyl beta-d-glucosaminide alpha 1–6 fucosyltransferase from cultured human skin fibroblasts. Requirement of a specific biantennary oligosaccharide as substrate. J. Biol. Chem. 1991;266:21572–21577. [PubMed] [Google Scholar]
  101. Walmsley A.R., Hooper N.M. Glycosylation efficiency of Asn-Xaa-Thr sequons is independent of distance from the C-terminus in membrane dipeptidase. Glycobiology. 2003;13(9):641–646. doi: 10.1093/glycob/cwg080. [DOI] [PubMed] [Google Scholar]
  102. Wang W.C., Lee N., Aoki D., Fukuda M.N., Fukuda M. The poly-N-acetyllactosamines attached to lysosomal membrane glycoproteins are increased by the prolonged association with the Golgi complex. J. Biol. Chem. 1991;266:23185–23190. [PubMed] [Google Scholar]
  103. Wang W., Li W., Ikeda Y., Miyagawa J.I., Taniguchi M., Miyoshi E., Sheng Y., Ekuni A., Ko J.H., Yamamoto Y., Sugimoto T., Yamashita S., Matsuzawa Y., Grabowski G.A., Honke K., Taniguchi N. Ectopic expression of alpha1,6 fucosyltransferase in mice causes steatosis in the liver and kidney accompanied by a modification of lysosomal acid lipase. Glycobiology. 2001;11:165–174. doi: 10.1093/glycob/11.2.165. [DOI] [PubMed] [Google Scholar]
  104. Wasley L.C., Timony G., Murtha P., Stoudemire J., Dorner A.J., Caro J., Krieger M., Kaufman R.J. The importance of N- and O-linked oligosaccharides for the biosynthesis and in vitroin vivo biologic activities of erythropoietin. Blood. 1991;77:2624–2632. [PubMed] [Google Scholar]
  105. Weikert S., Papac D., Briggs J., Cowfer D., Tom S., Gawlitzek M., Lofgren J., Mehta S., Chisholm V., Modi N., Eppler S., Carroll K., Chamow S., Peers D., Berman P., Krummen L. Engineering Chinese hamster ovary cells to maximize sialic acid content of recombinant glycoproteins. Nat. Biotechnol. 1999;17:1116–1121. doi: 10.1038/15104. [DOI] [PubMed] [Google Scholar]
  106. Weiss P., Ashwell G. The asialoglycoprotein receptor: properties and modulation by ligand. Prog. Clin. Biol. Res. 1989;300:169–184. [PubMed] [Google Scholar]
  107. Wormald M.R., Rudd P.M., Harvey D.J., Chang S.C., Scragg I.G., Dwek R.A. Variations in oligosaccharide-protein interactions in immunoglobulin G determine the site-specific glycosylation profiles and modulate the dynamic motion of the Fc oligosaccharides. Biochemistry. 1997;36:1370–1380. doi: 10.1021/bi9621472. [DOI] [PubMed] [Google Scholar]
  108. Xie L., Wang D.I. Integrated approaches to the design of media and feeding strategies for fed-batch cultures of animal cells. Trends Biotechnol. 1997;15:109–113. doi: 10.1016/S0167-7799(97)01014-7. [DOI] [PubMed] [Google Scholar]
  109. Yamashita K., Koide N., Endo T., Iwaki Y., Kobata A. Altered glycosylation of serum transferring of patients with hepatocellular carcinoma. J. Biol. Chem. 1989;264:2415–2423. [PubMed] [Google Scholar]
  110. Yan A., Lennarz W.J. Unraveling the mechanism of protein N-glycosylation. J. Biol. Chem. 2005;280:3121–3124. doi: 10.1074/jbc.R400036200. [DOI] [PubMed] [Google Scholar]
  111. Yanagidani S., Uozumi N., Ihara Y., Miyoshi E., Yamaguchi N., Taniguchi N. Purification and cDNA cloning of GDP-l-Fuc:N-acetyl-beta-d-glucosaminide:alpha1–6 fucosyltransferase (alpha1–6 FucT) from human gastric cancer MKN45 cells. J. Biochem. 1997;121:626–632. doi: 10.1093/oxfordjournals.jbchem.a021631. [DOI] [PubMed] [Google Scholar]
  112. Yang M., Butler M. Effects of ammonia on CHO cell growtherythropoietin production, and glycosylation. Biotechnol. Bioeng. 2000;68:370–380. doi: 10.1002/(SICI)1097-0290(20000520)68:4<370::AID-BIT2>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
  113. Zanghi J.A., Mendoza T.P., Knop R.H., Miller W.M. Ammonia inhibits neural cell adhesion molecule polysialylation in Chinese hamster ovary and small cell lung cancer cells. J. Cell Physiol. 1998;177:248–263. doi: 10.1002/(SICI)1097-4652(199811)177:2<248::AID-JCP7>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]

Articles from Cytotechnology are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES