Skip to main content
Cytotechnology logoLink to Cytotechnology
. 2006 Jun 30;50(1-3):141–162. doi: 10.1007/s10616-005-5507-z

Cell Culture Processes for the Production of Viral Vectors for Gene Therapy Purposes

James N Warnock 1, Otto-Wilhelm Merten 2, Mohamed Al-Rubeai 3,
PMCID: PMC3476008  PMID: 19003076

Abstract

Gene therapy is a promising technology for the treatment of several acquired and inherited diseases. However, for gene therapy to be a commercial and clinical success, scalable cell culture processes must be in place to produce the required amount of viral vectors to meet market demand. Each type of vector has its own distinct characteristics and consequently its own challenges for production. This article reviews the current technology that has been developed for the efficient, large-scale manufacture of retrovirus, lentivirus, adenovirus, adeno-associated virus and herpes simplex virus vectors.

Key words: Adeno-associated virus, Adenovirus, Bioreactor, Culture conditions, Herpes simplex virus vectors, Lentivirus, Microcarrier, Optimization, Process development, Retrovirus

References

  1. Al-Rubeai M., Emery A.N., Chalder S., Jan D.C. Specific monoclonal antibody productivity and the cell cycle-comparisons of batchcontinuous and perfusion cultures. Cytotechnology. 1992;9:85–97. doi: 10.1007/BF02521735. [DOI] [PubMed] [Google Scholar]
  2. Al-Rubeai M., Rookes S., Emery A. N. Studies of cell proliferation and monoclonal antibody synthesis and secretion in alginate-entrapped hybridoma cells. In: de Bont J.A.M., Visser J., Mattiasson B., Tramper J., editors. Physiology of Immobilized cells. 10-12-1989. AmsterdamThe Netherlands: Elsevier Science Publishers Cells; 1990. pp. 181–188. [Google Scholar]
  3. Beer C., Buhr P., Hahn H., Laubner D., Wirth M. Gene expression analysis of murine cells producing amphotropic mouse leukaemia virus at a cultivation temperature of 32 and 37 °C. J. Gen. Virol. 2003a;84:1677–1686. doi: 10.1099/vir.0.18871-0. [DOI] [PubMed] [Google Scholar]
  4. Beer C., Meyer A., Muller K., Wirth M. The temperature stability of mouse retroviruses depends on the cholesterol levels of viral lipid shell and cellular plasma membrane. Virology. 2003b;308:137–146. doi: 10.1016/S0042-6822(02)00087-9. [DOI] [PubMed] [Google Scholar]
  5. Benihoud K., Yeh P., Perricaudet M. Adenovirus vectors for gene delivery. Curr. Opin. Biotechnol. 1999;10:440–447. doi: 10.1016/S0958-1669(99)00007-5. [DOI] [PubMed] [Google Scholar]
  6. Blouin V., Brument N., Toublanc E., Raimbaud I., Moullier P., Salvetti A. Improving rAAV production and purification: towards the definition of a scaleable process. J Gene Med. (2004);6(1):s223–s228. doi: 10.1002/jgm.505. [DOI] [PubMed] [Google Scholar]
  7. Braas G., Searle P.F., Slater N.K.H., Lydiatt A. Stratagies for the isolation and purification of retroviral vectors for human gene therapy. Bioseparation. 1996;6:211–228. [PubMed] [Google Scholar]
  8. Breyer B., Jiang W., Cheng H., Zhou L., Paul R., Feng T., He T.C. Adenoviral vector-mediated gene transfer for human gene therapy. Curr. Gene Ther. 2001;1:149–162. doi: 10.2174/1566523013348689. [DOI] [PubMed] [Google Scholar]
  9. Brooks A.I., Stein C.S., Hughes S.M., Heth J., Mccray P.M., Sauter S.L., Johnston J.C., Cory-Slechta D.A., Federoff H.J., Davidson B.L. Functional correction of established central nervous system deficits in an animal model of lysosomal storage disease with feline immunodeficiency virus-based vectors. Proc. Natl. Acad. Sci. USA. 2002;99:6216–6221. doi: 10.1073/pnas.082011999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Carroll R., Lin J.T., Dacquel E.J., Mosca J.D., Burke D.S., St Louis D.C. A human immunodeficiency virus type 1 (HIV-1)-based retroviral vector system utilizing stable HIV-1 packaging cell lines. J. Virol. 1994;68:6047–6051. doi: 10.1128/jvi.68.9.6047-6051.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chuah M.K., Collen D., Vanden Driessche T. Biosafety of adenoviral vectors. Curr. Gene Ther. 2003;3:527–543. doi: 10.2174/1566523034578140. [DOI] [PubMed] [Google Scholar]
  12. Clark K.R. Recent Advances in Recombinant Adeno-Associated Virus Vector Production. Kidney Int. 2002;61:9–15. doi: 10.1046/j.1523-1755.2002.0610s1009.x. [DOI] [PubMed] [Google Scholar]
  13. Coleman J.E., Huentelman M.J., Kasparov S., Metcalfe B.L., Paton J.F., Katovich M.J., Semple-Rowland S.L., Raizada M.K. Efficient large-scale production and concentration of HIV-1-based lentiviral vectors for use in vivo. Physiol. Genom. 2003;12:221–228. doi: 10.1152/physiolgenomics.00135.2002. [DOI] [PubMed] [Google Scholar]
  14. Collaco R.F., Cao X., Trempe J.P. A helper virus-free packaging system for recombinant adeno-associated virus vectors. Gene. 1999;238:397–405. doi: 10.1016/S0378-1119(99)00347-9. [DOI] [PubMed] [Google Scholar]
  15. Coroadinha A.S., Schucht R., Gama-Norton L., Wirth D., Hauser H. and Carrondo M.J.T. 2005. The use of recombinase Cassette Exchange in retroviral Vector Producer Cell Lines: predictability and efficiency in transgene replacement. J. Biotechnol.Submitted. [DOI] [PubMed]
  16. Cortin V., Thibault J., Jacob D., Garnier A. High-titer adenovirus vector production in 293S cell perfusion culture. Biotechnol. Prog. 2004;20:858–863. doi: 10.1021/bp034237l. [DOI] [PubMed] [Google Scholar]
  17. Côté J., Garnier A., Massie B., Kamen A. Serum-free Production of Recombinant Proteins and Adenoviral Vectors by 293SF-3F6 Cells. Biotechnol. Bioeng. 1998;59:567–575. doi: 10.1002/(SICI)1097-0290(19980905)59:5<567::AID-BIT6>3.0.CO;2-8. [DOI] [PubMed] [Google Scholar]
  18. Cruz P.E., Almeida J.S., Murphy P.N., Moreira J.L., Carrondo M.J. Modeling retrovirus production for gene therapy. 1. Determination of optimal bioreaction mode and harvest strategy. Biotechnol. Prog. 2000;16:213–221. doi: 10.1021/bp9901466. [DOI] [PubMed] [Google Scholar]
  19. Cruz P.E., Carmo M., Coroadinha A.S., Bengala A., Goncalves D., Teixeira M., Merten O.-W., Gény-Fiamma C., Carrondo M.J.T. Retroviral vector stability: inactivation kinetics and membrane properties. In: Godia F., Fussenegger M., editors. Animal Cell Technology meets Genomics. Dordrecht/NL: Springer; 2005. pp. 303–308. [Google Scholar]
  20. Curran M.A., Kaiser S.M., Achacoso P.L., Nolan G.P. Efficient transduction of nondividing cells by optimized feline immunodeficiency virus vectors. Mol. Ther. 2000;1:31–38. doi: 10.1006/mthe.1999.0007. [DOI] [PubMed] [Google Scholar]
  21. Davis J.L., Witt R.M., Gross P.R., Hokanson C.A., Jungles S., Cohen L.K., Danos O., Spratt S.K. Retroviral particles produced from a stable human-derived packaging cell line transduce target cells with very high efficiencies. Hum. Gene Ther. 1997;8:1459–1467. doi: 10.1089/hum.1997.8.12-1459. [DOI] [PubMed] [Google Scholar]
  22. Fallaux F.J., Kranenburg O., Cramer S.J., Houweling A., Van Ormondt H., Hoeben R.C., Van Der Eb A.J. Characterization of 911: a new helper cell line for the titration and propagation of early region 1-deleted adenoviral vectors. Hum. Gene Ther. 1996;7(2):215–222. doi: 10.1089/hum.1996.7.2-215. [DOI] [PubMed] [Google Scholar]
  23. Fallaux F.J., Bout A., Van Der Velde I., Van Den Wollenberg D.J., Hehir K.M., Keegan J., Auger C., Cramer S.J., Van Ormondt H., Van Der Eb A.J., Valerio D., Hoeben R.C. New helper cells and matched early region 1-deleted adenovirus vectors prevent generation of replication-competent adenoviruses. Hum. Gene Ther. 1998;9(13):1909–1917. doi: 10.1089/hum.1998.9.13-1909. [DOI] [PubMed] [Google Scholar]
  24. Farson D., Harding T.C., Tao L., Liu J., Powell S., Vimal V., Yendluri S., Koprivnikar K., Ho K., Twitty C., Husak P., Lin A., Snyder R.O., Donahue B.A. Development and characterization of a cell line for large-scaleserum-free production of recombinant adeno-associated viral vectors. J. Gene Med. 2004;6(12):1369–1381. doi: 10.1002/jgm.622. [DOI] [PubMed] [Google Scholar]
  25. Fassnacht D., Rössing S., Singh R.P., Al Rubeai M., Pörtner R. Influence of bcl-2 on antibody productivity in high cell density perfusion cultures of hybridoma. Cytotechnology. 1999;30:95–105. doi: 10.1023/A:1008055702079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Forestell S.P., Bohnlein E., Rigg R.J. Retroviral end-point titer is not predictive of gene transfer efficiency: implications for vector production. Gene Ther. 1995;2:723–730. [PubMed] [Google Scholar]
  27. Forestell S.P., Dando J.S., Chen J., de Vries P., Bohnlein E., Rigg R.J. Novel retroviral packaging cell lines: complementary tropisms and improved vector production for efficient gene transfer. Gene Ther. 1997;4:600–610. doi: 10.1038/sj.gt.3300420. [DOI] [PubMed] [Google Scholar]
  28. Friedmann T. 1997. Overcoming the obstacles to gene therapy. Scientific American, 80–85. [PubMed]
  29. Gao G.P., Yang Y., Wilson J.M. Biology of adenovirus vectors with E1 and E4 deletions for liver-directed gene therapy. J. Virol. 1996;70:8934–8943. doi: 10.1128/jvi.70.12.8934-8943.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Gao G.P., Lu F., Sanmiguel J.C., Tran P.T., Abbas Z., Lynd K.S., Marsh J., Spinner N.B., Wilson J.M. Rep/Cap gene amplification and high-yield production of AAV in an A549 cell line expressing Rep/Cap. Mol. Ther. 2002;5:644–649. doi: 10.1006/mthe.2001.0591. [DOI] [PubMed] [Google Scholar]
  31. Gao X., Huang L. Cationic liposome-mediated gene transfer. Gene Ther. 1995;2:710–722. [PubMed] [Google Scholar]
  32. Garnier A., Cortin V., Thibault J., Jacob D. Production of Recombinant Adenovirus by 293 Cells Cultures in Perfusion. Snowmass: Cell Culture Engineering VIII; 2002. [Google Scholar]
  33. Garnier A., Cote J., Nadeau I., Kamen A., Massie B. Scale-up of the adenovirus expression system for the production of recombinant protein in human 293S cells. Cytotechnology. 1994;15:145–155. doi: 10.1007/BF00762389. [DOI] [PubMed] [Google Scholar]
  34. Gény-Fiamma C., Millot L., Rocca C., Danos O., Merten O.W. Optimization of the production of retroviraol vectors: influences of the sugar source. In: Yagasaki K., Miura Y., Hatori M., Nomura Y., editors. Animal Cell Technology: Basic & Applied Aspects. Netherlands: Springer Netherlands; 2004. pp. 89–97. [Google Scholar]
  35. Geraerts M., Michiels M., Baekelandt V., Debyser Z. and Gijsbers R. 2005. Upscaling of lentiviral vector production by tangential flow filtration. J. Gene Med. Published online May 20, 2005. http://dx.doi.org/10.1002/jgm.778. [DOI] [PubMed]
  36. Gerin P.A., Gilligan M.G., Searle P.F., Al-Rubeai M. Improved titers of retroviral vectors from the human FLYRD18 packaging cell line in serum- and protein-free medium. Hum. Gene Ther. 1999a;10:1965–1974. doi: 10.1089/10430349950017329. [DOI] [PubMed] [Google Scholar]
  37. Gerin P.A., Searle P.F., Al-Rubeai M. Production of retroviral vectors for gene therapy with the human packaging cell line FLYRD18. Biotechnol. Prog. 1999b;15:941–948. doi: 10.1021/bp990085b. [DOI] [PubMed] [Google Scholar]
  38. Ghivizzani S.C., Lechman E.R., Tio C., Mule K.M., Chada S., McCormack J.E., Evans C.H., Robbins P.D. Direct retrovirus-mediated gene transfer to the synovium of the rabbit knee: implications for arthritis gene therapy. Gene Ther. 1997;4:977–982. doi: 10.1038/sj.gt.3300486. [DOI] [PubMed] [Google Scholar]
  39. Graham F.L., Smiley J., Russell W.C., Nairn R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol. 1977;36:59–74. doi: 10.1099/0022-1317-36-1-59. [DOI] [PubMed] [Google Scholar]
  40. Griffiths J.B. Overview of cell culture systems and their Scale-up. In: Spier R.E., Griffiths J.B., editors. Animal Cell Biotechnology, vol. 3. London: Academic Press Limited; 1988. pp. 179–220. [Google Scholar]
  41. Grimm D., Kern A., Rittner K., Kleinschmidt J.A. Novel tools for production and purification of recombinant adenoassociated virus vectors. Hum. Gene Ther. 1998;9:2745–2760. doi: 10.1089/hum.1998.9.18-2745. [DOI] [PubMed] [Google Scholar]
  42. Grimm D., et al. Titration of AAV-2 particles via a novel capsid ELISA: packaging of genomes can limit production of recombinant AAV-2. Gene Ther. 1999;6:1322–1330. doi: 10.1038/sj.gt.3300946. [DOI] [PubMed] [Google Scholar]
  43. Haselhorst D., Kaye J.F., Lever A.M. Development of cell lines stably expressing human immunodeficiency virus type 1 proteins for studies in encapsidation and gene transfer. J. Gen. Virol. 1998;79(Pt 2):231–237. doi: 10.1099/0022-1317-79-2-231. [DOI] [PubMed] [Google Scholar]
  44. He T.C., Zhou S., da Costa L.T., Yu J., Kinzler K.W., Vogelstein B. A simplified system for generating recombinant adenoviruses. Proc. Natl. Acad. Sci. USA. 1998;95:2509–2514. doi: 10.1073/pnas.95.5.2509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Kost T.A., Klein J.L. and Condreay J.P. 2000. Application of recombinant baculoviruses in biopharmaceutical research. In: Al-Rubeai M. (ed.), Cell Engineering, Vol. 2: Transient Expression. Kluwer Academic Publications, pp.1–28.
  46. Ikeda Y., Takeuchi Y., Martin F., Cosset F.L., Mitrophanous K., Collins M. Continuous high-titer HIV-1 vector production. Nat. Biotechnol. 2003;21:569–572. doi: 10.1038/nbt815. [DOI] [PubMed] [Google Scholar]
  47. Imler J.L., Chartier C., Dreyer D., Dieterle A., Sainte-Marie M., Faure T., Pavirani A., Mehtali M. Novel complementation cell lines derived from human lung carcinoma A549 cells support the growth of E1-deleted adenovirus vectors. Gene Ther. 1996;3:75–84. [PubMed] [Google Scholar]
  48. Imren S., Payen E., Westerman K.A., Pawliuk R., Fabry M.E., Eaves C.J., Cavilla B., Wadsworth L.D., Beuzard Y., Bouhassira E.E., Russell R., London I.M., Nagel R.L., Leboulch P., Humphries R.K. Permanent and panerythroid correction of murine beta thalassemia by multiple lentiviral integration in hematopoietic stem cells. Proc. Natl. Acad Sci USA. 2002;99:14380–14385. doi: 10.1073/pnas.212507099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Iyer P., Ostrove J.M., Vacante D. Comparison of manufacturing techniques for adenovirus production. Cytotechnology. 1999;30:169–172. doi: 10.1023/A:1008040221630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Jardon M., Garnier A. pH, pCO2temperature effect on r-adenovirus production. Biotechnol. Prog. 2003;19:202–208. doi: 10.1021/bp025585a. [DOI] [PubMed] [Google Scholar]
  51. Jenny C., Toublanc E., Danos O. and Merten O.-W. 2005. Evaluation of a serum-free medium for the production of rAAV-2 using HeLa derived producer cells. Cytotechnology.In press. [DOI] [PMC free article] [PubMed]
  52. Johnson P.A., Yoshida K., Gage F.H., Friedmann T. Effects of gene transfer into cultured CNS neurons with a replication-defective herpes simplex virus type 1 vector. Brain Res Mol. Brain Res. 1992;12:95–102. doi: 10.1016/0169-328X(92)90072-J. [DOI] [PubMed] [Google Scholar]
  53. Johnston J.C., Gasmi M., Lim L.E., Elder J.H., Yee J.K., Jolly D.J., Campbell K.P., Davidson B.L., Sauter S.L. Minimum requirements for efficient transduction of dividing and nondividing cells by feline immunodeficiency virus vectors. J. Virol. 1999;73:4991–5000. doi: 10.1128/jvi.73.6.4991-5000.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Kafri T., van Praag H., Ouyang L., Gage F.H., Verma I.M. A packaging cell line for lentivirus vectors. J. Virol. 1999;73:576–584. doi: 10.1128/jvi.73.1.576-584.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Kamen A., Henry O. Development and optimization of an adenovirus production process. J. Gene Med. 2004;6:S184–S192. doi: 10.1002/jgm.503. [DOI] [PubMed] [Google Scholar]
  56. Kang S.-H., Lee G.M., Kim B.-G. Justification of continuous packed-bed reactor for retroviral vector production from amphotopic ψ CRIP murine producer cell. Cytotechnology. 2000;34:151–158. doi: 10.1023/A:1008120313175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Kaptein L.C., Greijer A.E., Valerio D., van Beusechem V.W. Optimized conditions for the production of recombinant amphotropic retroviral vector preparations. Gene Ther. 1997;4:172–176. doi: 10.1038/sj.gt.3300373. [DOI] [PubMed] [Google Scholar]
  58. Karavodin L.M., Robbins J., Chong K., Hsu D., Ibanez C., Mento S., Jolly D., Fong T.C. Generation of a systemic antitumor response with regional intratumoral injections of interferon gamma retroviral vector. Hum. Gene Ther. 1998;9:2231–2241. doi: 10.1089/hum.1998.9.15-2231. [DOI] [PubMed] [Google Scholar]
  59. Kioukia N., Nienow A.W., Al-Rubeai M., Emery A.N. Influence of agitation and sparging on the growth rate and infection of insect cells in bioreactors and comparison with hybridoma culture. Biotechnol. Prog. 1996;12:779–785. doi: 10.1021/bp9600703. [DOI] [Google Scholar]
  60. Kim S.H., Kim S., Robbins P.D. Retroviral vectors. Adv. Virus Res. 2000;55:545–563. doi: 10.1016/S0065-3527(00)55017-9. [DOI] [PubMed] [Google Scholar]
  61. Kotani H., Newton P.B., III, Zhang S., Chiang Y.L., Otto E., Weaver L., Blaese R.M., Anderson W.F., McGarrity G.J. Improved methods of retroviral vector transduction and production for gene therapy. Hum. Gene Ther. 1994;5:19–28. doi: 10.1089/hum.1994.5.1-19. [DOI] [PubMed] [Google Scholar]
  62. Krisky D.M., Wolfe D., Goins W.F., Marconi P.C., Ramakrishnan R., Mata M., Rouse R.J., Fink D.J., Glorioso J.C. Deletion of multiple immediate-early genes from herpes simplex virus reduces cytotoxicity and permits long-term gene expression in neurons. Gene Ther. 1998;5:1593–1603. doi: 10.1038/sj.gt.3300766. [DOI] [PubMed] [Google Scholar]
  63. Lai C.M., Lai Y.K.Y., Rakoczy P.E. Adenovirus and adeno-associated virus vectors. DNA Cell Biol. 2002;21:895–913. doi: 10.1089/104454902762053855. [DOI] [PubMed] [Google Scholar]
  64. Le Doux J.M., Davis H.E., Morgan J.R., Yarmush M.L. Kinetics of retrovirus production and decay. Biotechnol. Bioeng. 1999;63:654–662. doi: 10.1002/(SICI)1097-0290(19990620)63:6<654::AID-BIT3>3.0.CO;2-1. [DOI] [PubMed] [Google Scholar]
  65. Lee S.G., Kim S., Robbins P.D., Kim B.G. Optimization of environmental factors for the production and handling of recombinant retrovirus. Appl. Microbiol. Biotechnol. 1996;45:477–483. doi: 10.1007/BF00578459. [DOI] [PubMed] [Google Scholar]
  66. Lee Y.Y., Yap M.G., Hu W.S., Wong K.T. Low-glutamine fed-batch cultures of 293-HEK serum-free suspension cells for adenovirus production. Biotechnol. Prog. 2003;19:501–509. doi: 10.1021/bp025638o. [DOI] [PubMed] [Google Scholar]
  67. Lever A.M.L., Strappe P.M., Zhao J. Lentiviral Vectors. J. Biomed. Sci. 2004;11:439–449. doi: 10.1007/BF02256092. [DOI] [PubMed] [Google Scholar]
  68. Lochmuller H., Jani A., Huard J., Prescott S., Simoneau M., Massie B., Karpati G., Acsadi G. Emergence of early region 1-containing replication-competent adenovirus in stocks of replication-defective adenovirus recombinants (delta E1 + delta E3) during multiple passages in 293 cells. Hum. Gene Ther. 1994;5:1485–1491. doi: 10.1089/hum.1994.5.12-1485. [DOI] [PubMed] [Google Scholar]
  69. Loewen N., Leske D.A., Chen Y., Teo W.L., Saenz D.T., Peretz M., Holmes J.M., Poeschla E.M. Comparison of wild-type and class I integrase mutant-FIV vectors in retina demonstrates sustained expression of integrated transgenes in retinal pigment epithelium. J. Gene Med. 2003;5:1009–1017. doi: 10.1002/jgm.447. [DOI] [PubMed] [Google Scholar]
  70. Looby D., Griffiths B. Immobilisation of animal cells in porous carrier culture. Trends Biotechnol. 1990;8:204–209. doi: 10.1016/0167-7799(90)90177-Y. [DOI] [PubMed] [Google Scholar]
  71. Lyddiat A., O’Sullivan D.A. Biochemical recovery and purification of gene therapy vectors. Curr. Opin. Biotechnol. 1998;9:177–185. doi: 10.1016/S0958-1669(98)80112-2. [DOI] [PubMed] [Google Scholar]
  72. Mannix C. and Jarman R.F. 2000. A guide to successful scale-up of the baculovirus expression system. In: Al-Rubeai M.(eds) Cell Engineering, Vol. 2: Transient Expression. Kluwer Academic Publications, pp. 43–55.
  73. Matsushita T., Elliger S., Elliger C., Podsakoff G., Villarreal L., Kurtzman G.J., Iwaki Y., Colosi P. Adeno- associated virus vectors can be efficiently produced without helper virus. Gene Ther. 1998;5:938–945. doi: 10.1038/sj.gt.3300680. [DOI] [PubMed] [Google Scholar]
  74. McTaggart S. 2000. Retroviral Vector Production for Gene Therapy Applications. Ph. D. Thesis, University of Birmingham.
  75. McTaggart S., Al-Rubeai M. Effects of culture parameters on the production of retroviral vectors by a human packaging cell line. Biotechnol. Prog. 2000;16:859–865. doi: 10.1021/bp000078j. [DOI] [PubMed] [Google Scholar]
  76. McTaggart S., Al-Rubeai M. Relationship between cell proliferation, cell-cycle phaseand retroviral vector production in FLYRD18 human packaging cells. Biotechnol. Bioeng. 2001;76:52–60. doi: 10.1002/bit.1025. [DOI] [PubMed] [Google Scholar]
  77. McTaggart S., Al-Rubeai M. Retroviral vectors for human gene delivery. Biotechnol. Adv. 2002;20:1–31. doi: 10.1016/S0734-9750(01)00087-8. [DOI] [PubMed] [Google Scholar]
  78. Meghrous J., Aucoin M.G., Jacob D., Chahal P.S., Arcand N., Kamen A.A. Production of recombinant adeno-associated viral vectors using a baculovirus/insect cell suspension culture system: from shake flasks to a 20-L bioreactor. Biotechnol. Prog. 2005;21:154–160. doi: 10.1021/bp049802e. [DOI] [PubMed] [Google Scholar]
  79. Mellerick D.M., Fraser N. Physical state of the latent herpes simplex virus genome in a mouse model system: evidence suggesting an episomal state. Virology. 1987;158:265–275. doi: 10.1016/0042-6822(87)90198-X. [DOI] [PubMed] [Google Scholar]
  80. Merten O.-W. State-of-the-art of the production of retroviral vectors. J. Gene Med. 2004;6:S105–S124. doi: 10.1002/jgm.499. [DOI] [PubMed] [Google Scholar]
  81. Merten O.-W., Cornet V., Petres S., Couvé E., Heard J.M. Large scale production of retrovirus vectors (abstract) Cytotechnology. 1996;21:8. [Google Scholar]
  82. Merten O.-W., Cruz P.E., Rochette C., Gény-Fiamma C., Bouquet C., Goncalves D., Danos O., Carrondo M.J.T. Comparison of different bioreactor systems for the production of high titer retroviral vectors. Biotechnol. Prog. 2001a;17:326–335. doi: 10.1021/bp000162z. [DOI] [PubMed] [Google Scholar]
  83. Merten O.-W., Gény-Fiamma C., Douar A.M. Current issues in adeno-associated viral vectors production. Gene Ther. 2005;12:S51–S61. doi: 10.1038/sj.gt.3302615. [DOI] [PubMed] [Google Scholar]
  84. Merten O.-W., Landric L., Danos O. Influence of the metabolic status of packaging cells on retroviral vector production. In: Merten O.-W., Mattanovich D., Lang C., Larsson G., Neubauer P., Porro D., Postma P., Teixeira de Mattos J., Cole J.A., editors. Recombinant Protein Production with Prokaryotic and Eukayotic Cells A Comparative View on Host Physiology. Netherlands: Springer Netherlands; 2001b. pp. 303–318. [Google Scholar]
  85. Michael S.I., Curiel D.T. Strategies to achieve targeted gene delivery via the receptor-mediated endocytosis pathway. Gene Ther. 1994;1:223–232. [PubMed] [Google Scholar]
  86. Mitrophanous K., Yoon S., Rohll J., Patil D., Wilkes F., Kim V., Kingsman S., Kingsman A., Mazarakis N. Stable gene transfer to the nervous system using a non-primate lentiviral vector. Gene Ther. 1999;6:1808–1818. doi: 10.1038/sj.gt.3301023. [DOI] [PubMed] [Google Scholar]
  87. Nadeau I., Garnier A., Cote J., Massie B., Chavarie C., Kamen A. Improvement of recombinant protein production with the human adenovirus/293S expression system using fed-batch strategies. Biotechnol. Bioeng. 1996;51:613–623. doi: 10.1002/(SICI)1097-0290(19960920)51:6<613::AID-BIT1>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
  88. Nadeau I., Gilbert P.A., Jacob D., Perrier M., Kamen A. Low-protein medium affects the 293SF central metabolism during growth and infection with adenovirus. Biotechnol. Bioeng. 2002a;77:91–104. doi: 10.1002/bit.10128. [DOI] [PubMed] [Google Scholar]
  89. Nadeau I., Jacob D., Perrier M., Kamen A. 293SF metabolic flux analysis during cell growth and infection with an adenoviral vector. Biotechnol. Prog. 2000;16:872–884. doi: 10.1021/bp000098l. [DOI] [PubMed] [Google Scholar]
  90. Nadeau I., Kamen A. Production of adenovirus vector for gene therapy. Biotechnol. Adv. 2003;20:475–489. doi: 10.1016/S0734-9750(02)00030-7. [DOI] [PubMed] [Google Scholar]
  91. Nadeau I., Seanez G. and Wu F. 2001. Adenovirus production in 293 cells: a comparative study between a suspension cell and an adherent cell process. The 17th ESACT Meeting, Tylosand, Sweden, June 10–14.
  92. Nadeau I., Seanez G. and Wu F. 2002b. Optimization of a 293 suspension process for adenovirus production. Cell Culture Engineering VIII, Snowmass, Colorado, April 1–6.
  93. Navarro J., Oudrhiri N., Fabrega S., Lehn P. Gene delivery systems: bridging the gap between recombinant viruses and artificial vectors. Adv. Drug Deliv. Rev. 1998;30:5–11. doi: 10.1016/S0169-409X(97)00102-6. [DOI] [PubMed] [Google Scholar]
  94. Nemunaitis J., Fong T., Burrows F., Bruce J., Peters G., Ognoskie N., Meyer W., Wynne D., Kerr R., Pippen J., Oldham F., Ando D. Phase I trial of interferon gamma retroviral vector administered intratumorally with multiple courses in patients with metastatic melanoma. Hum. Gene Ther. 1999;10:1289–1298. doi: 10.1089/10430349950017978. [DOI] [PubMed] [Google Scholar]
  95. Ni Y., Sun S., Oparaocha I., Humeau L., Davis B., Cohen R., Binder G., Chang Y.N., Slepushkin V., Dropulic B. Generation of a packaging cell line for prolonged large-scale production of high-titer HIV-1-based lentiviral vector. J. Gene Med. 2005;7(6):818–834. doi: 10.1002/jgm.726. [DOI] [PubMed] [Google Scholar]
  96. Olsen J.C. Gene transfer vectors derived from equine infectious anemia virus. Gene Ther. 1998;5:1481–1487. doi: 10.1038/sj.gt.3300768. [DOI] [PubMed] [Google Scholar]
  97. Olsen J.C., Sechelski J. Use of sodium butyrate to enhance production of retroviral vectors expressing CFTR cDNA. Hum. Gene Ther. 1995;6:1195–1202. doi: 10.1089/hum.1995.6.9-1195. [DOI] [PubMed] [Google Scholar]
  98. Ozuer A., Wechuck J.B., Goins W.F., Wolfe D., Glorioso J.C., Ataai M.M. Effect of genetic background and culture conditions on the production of herpesvirus-based gene therapy vectors. Biotechnol. Bioeng. 2002;77:685–692. doi: 10.1002/bit.10162. [DOI] [PubMed] [Google Scholar]
  99. Pages J.C., Loux N., Farge D., Briand P., Weber A. Activation of Moloney murine leukemia virus LTR enhances the titer of recombinant retrovirus in psi CRIP packaging cells. Gene Ther. 1995;2:547–551. [PubMed] [Google Scholar]
  100. Palu G., Bonaguro R., Marcello A. In pursuit of new developments for gene therapy of human diseases. J. Biotechnol. 1999;68:1–13. doi: 10.1016/S0168-1656(98)00134-5. [DOI] [PubMed] [Google Scholar]
  101. Pan D., Whitley C.B. Closed hollow-fiber bioreactor: a new approach to retroviral vector production. J. Gene Med. 1999;1:433–440. doi: 10.1002/(SICI)1521-2254(199911/12)1:6<433::AID-JGM69>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
  102. Parasrampuria D.A. and Hunt C.A. 1998. Therapeutic delivery issues in gene therapy, Part 1: Vectors. BioPharm, 38–45.
  103. Parks R.J., Chen L., Anton M., Sankar U., Rudnicki M.A., Graham F.L. A helper-dependent adenovirus vector system: removal of helper virus by Cre-mediated excision of the viral packaging signal. Proc. Natl. Acad. Sci. USA. 1996;93:13565–13570. doi: 10.1073/pnas.93.24.13565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Pear W.S., Nolan G.P., Scott M.L., Baltimore D. Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl. Acad. Sci. USA. 1993;90:8392–8396. doi: 10.1073/pnas.90.18.8392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Pensiero M.N., Wysocki C.A., Nader K., Kikuchi G.H. Development of amphotropic murine retrovirus vectors resistant to inactivation by human serum. Hum. Gene Ther. 1996;7:1095–1101. doi: 10.1089/hum.1996.7.9-1095. [DOI] [PubMed] [Google Scholar]
  106. Peshwa M.V., Kyung Y.-S., McClure D.B., Hu W.-S. Cultivation of mammalian cells as aggregates in bioreactors: effect of calcium concentration on spatial distribution of viability. Biotechnol. Bioeng. 1993;41:179–187. doi: 10.1002/bit.260410203. [DOI] [PubMed] [Google Scholar]
  107. Pizzato M., Merten O.W., Blair E.D., Takeuchi Y. Development of a suspension packaging cell line for production of high titreserum-resistant murine leukemia virus vectors. Gene Ther. 2001;8:737–745. doi: 10.1038/sj.gt.3301457. [DOI] [PubMed] [Google Scholar]
  108. Rigg R.J., Chen J., Dando J.S., Forestell S.P., Plavec I., Bohnlein E. A novel human amphotropic packaging cell line: high titercomplement resistanceand improved safety. Virology. 1996;218:290–295. doi: 10.1006/viro.1996.0194. [DOI] [PubMed] [Google Scholar]
  109. Robbins P.D., Hideaki T., Ghivizzani S.C. Viral vectors for gene therapy. Trends Biotechnol. 1998;16:35–40. doi: 10.1016/S0167-7799(97)01137-2. [DOI] [PubMed] [Google Scholar]
  110. Sadaie M.R., Zamani M., Whang S., Sistron N., Arya S.K. Towards developing HIV-2 lentivirus-based retroviral vectors for gene therapy: dual gene expression in the context of HIV-2 LTR and Tat. J. Med. Virol. 1998;54:118–128. doi: 10.1002/(SICI)1096-9071(199802)54:2<118::AID-JMV9>3.0.CO;2-9. [DOI] [PubMed] [Google Scholar]
  111. Sallberg M., Hughes J., Javadian A., Ronlov G., Hultgren C., Townsend K., Anderson C.G., O’Dea J., Alfonso J., Eason R., Murthy K.K., Jolly D.J., Chang S.M., Mento S.J., Milich D., Lee W.T. Genetic immunization of chimpanzees chronically infected with the hepatitis B virus using a recombinant retroviral vector encoding the hepatitis B virus core antigen. Hum. Gene Ther. 1998;9:1719–1729. doi: 10.1089/hum.1998.9.12-1719. [DOI] [PubMed] [Google Scholar]
  112. Salvetti A., Oreve S., Chadeuf G., Favre D., Cherel Y., Champion-Arnaud P., David-Ameline J., Moullier P. Factors influencing recombinant adeno-associated virus production. Hum. Gene Ther. 1998;9:695–706. doi: 10.1089/hum.1998.9.5-695. [DOI] [PubMed] [Google Scholar]
  113. Schiedner G., Hertel S., Kochanek S. Efficient transformation of primary human amniocytes by E1 functions of Ad5: generation of new cell lines for adenoviral vector production. Hum. Gene Ther. 2000;11:2105–2116. doi: 10.1089/104303400750001417. [DOI] [PubMed] [Google Scholar]
  114. Schnell T., Foley P., Wirth M., Munch J., Uberla K. Development of a self-inactivating, minimal lentivirus vector based on simian immunodeficiency virus. Hum. Gene Ther. 2000;11:439–447. doi: 10.1089/10430340050015905. [DOI] [PubMed] [Google Scholar]
  115. Schonely K., Afable C., Slepushkin V., Lu X., Andre K., Boehmer J., Bengtson K., Doud M., Cohen R., Berlinger D., Slepushkina T., Chen Z., Li Y., Binder D., Davis B., Humeau L., Dropulic B. QC release testing of an HIV-1 based lentiviral vector lot and transduced cellular product. Bioproc. J. 2003;2:29–47. [Google Scholar]
  116. Schucht R., Coroadinha A.S., Zanta-Boussif M.A., Carrondo M., Hauser H. and Wirth D. 2005. A new generation of retroviral producer cells: predictable and stable virus production by Flp mediated site-specific integration of retroviral vectors. Mol. Thera. Submitted. [DOI] [PubMed]
  117. Sena-Esteves M., Tebbets J.C., Steffens S., Crombleholme T., Flake A.W. Optimized large-scale production of high titer lentivirus vector pseudotypes. J. Virol. Methods. 2004;122:131–139. doi: 10.1016/j.jviromet.2004.08.017. [DOI] [PubMed] [Google Scholar]
  118. Shen B.Q., Clarke M.F., Palsson D.O. Kinetics of retroviral production from the amphotrophic ψCRIP murine producer cell line. Cytotechnology. 1996;22:185–195. doi: 10.1007/BF00353938. [DOI] [PubMed] [Google Scholar]
  119. Shenk T. Adenoviridae: the viruses and their replication. In: Fields B.N., Knipe D.M., Howley P.M., Chanock R.M., Melnick J.L., Monath T.P., Roizman B., Straus S.E., editors. Fields Virology. Lippincott: Philadelphia; 1996. pp. 2111–2148. [Google Scholar]
  120. Sheridan P. L., Bodner M., Lynn A., Phuong T.K., DePolo N.J., la Vega D.J., Jr., O’Dea J., Nguyen K., McCormack J.E., Driver D.A., Townsend K., Ibanez C.E., Sajjadi N.C., Greengard J.S., Moore M.D., Respess J., Chang S.M., Dubensky T.W., Jr., Jolly D.J., Sauter S.L. Generation of retroviral packaging and producer cell lines for large-scale vector production and clinical application: improved safety and high titer. Mol. Ther. 2000;2:262–275. doi: 10.1006/mthe.2000.0123. [DOI] [PubMed] [Google Scholar]
  121. Starling E.H. On the absorption of fluids from the convective tissue space. J. Physiol. 1896;19:312–326. doi: 10.1113/jphysiol.1896.sp000596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Stitz J., Muhlebach M.D., Blomer U., Scherr M., Selbert M., Wehner P., Steidl S., Schmitt I., Konig R., Schweizer M., Cichutek K. A novel lentivirus vector derived from apathogenic simian immunodeficiency virus. Virology. 2001;291:191–197. doi: 10.1006/viro.2001.1183. [DOI] [PubMed] [Google Scholar]
  123. Takahashi K., Luo T.C., Saishin Y., Saishin Y., Sung J., Hackett S., Brazzell R.K., Kaleko M., Campochiaro P.A. Sustained transduction of ocular cells with a bovine immunodeficiency viral vector. Hum. Gene Ther. 2002;13:1305–1316. doi: 10.1089/104303402760128531. [DOI] [PubMed] [Google Scholar]
  124. Theodossiou I., Thomas O.R.T., Dunnill R. Methods for enhancing the recovery of plasmid genes from neutralised cell lysate. Bioproc. Eng. 1999;20:147–156. doi: 10.1007/s004490050573. [DOI] [Google Scholar]
  125. Torrent C., Bordet T., Darlix J.L. Analytical study of rat retrotransposon VL30 RNA dimerization in vitro and packaging in murine leukemia virus. J. Biol. Med. 1994;240:434–444. doi: 10.1006/jmbi.1994.1459. [DOI] [PubMed] [Google Scholar]
  126. Urabe M., Ding C., Kotin R.M. Insect cells as a factory to produce adeno-associated virus type 2 vectors. Hum. Gene Ther. 2002;13:1925–1943. doi: 10.1089/10430340260355347. [DOI] [PubMed] [Google Scholar]
  127. Van Den Driessche T., Vanslembrouck V., Goovaerts I., Zwinnen H., Vanderhaeghen M.L., Collen D., Chuah M.K. Long-term expression of human coagulation factor VIII and correction of hemophilia A after in vivo retroviral gene transfer in factor VIII-deficient mice. Proc. Natl. Acad. Sci. USA. 1999;96:10379–10384. doi: 10.1073/pnas.96.18.10379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Vos J.-M. H. 1995. Viruses in Human Gene Therapy. Chapman and Hall.
  129. Wang G., Davidson B.L., Melchert P., Slepushkin V.A., van Es H.H., Bodner M., Jolly D.J., McCray P.B., Jr. Influence of cell polarity on retrovirus-mediated gene transfer to differentiated human airway epithelia. J. Virol. 1998;72:9818–9826. doi: 10.1128/jvi.72.12.9818-9826.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Warnock J.N. and Al-Rubeai M. 2004. Influence of serum concentration on cell growth and retrovirus production and decay kinetics. In: Yagasaki K., Miura Y., Hatori M. and Nomura Y. (eds), Animal Cell Technology: Basic & Applied Aspects. Kluwer Academic Publishers.
  131. Warnock J. N., Al-Rubeai M. Production of Biologics from Animal Cell Cultures. In: Nedovic V., Willaert R., editors. Applications of Cell Immobilisation Biotechnology. Berlin, Heidelberg, New York: Springer; 2005. [Google Scholar]
  132. Warnock J.N., Price T., Slade A., Al-Rubeai M. Use of a Fluidised Bed Bioreactor for the Production of Retroviral Vectors for Gene Therapy Applications. Bioproc. J. 2004;3:41–45. [Google Scholar]
  133. Wechuck J.B., Ozuer A., Goins W.F., Wolfe D., Oligino T., Glorioso J.C., Ataai M.M. Effect of temperature medium composition and cell passage on production of herpes-based viral vectors. Biotechnol. Bioeng. 2002;79:112–119. doi: 10.1002/bit.10310. [DOI] [PubMed] [Google Scholar]
  134. Wikström K., Blomberg P., Islam K.B. Clinical grade vector production: analysis of yieldstability, and storage of gmp-produced retroviral vectors for gene therapy. Biotechnol. Prog. 2004;20:1198–1203. doi: 10.1021/bp030065g. [DOI] [PubMed] [Google Scholar]
  135. Wu N., Ataai M.M. Production of viral vectors for gene therapy applications. Curr. Opin. Biotechnol. 2000;11:205–208. doi: 10.1016/S0958-1669(00)00080-X. [DOI] [PubMed] [Google Scholar]
  136. Wu N., Watkins S.C., Schaffer P.A., DeLuca N.A. Prolonged gene expression and cell survival after infection by a herpes simplex virus mutant defective in the immediate-early genes encoding ICP4, ICP27, and ICP22. J. Virol. 1996;70:6358–6369. doi: 10.1128/jvi.70.9.6358-6369.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Wu S.C., Huang G.Y., Liu J.H. Production of retrovirus and adenovirus vectors for gene therapy: a comparative study using microcarrier and stationary cell culture. Biotechnol. Prog. 2002;18:617–622. doi: 10.1021/bp020026p. [DOI] [PubMed] [Google Scholar]
  138. Xiao X., Li J., Samulski R.J. Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J. Virol. 1998;72:2224–2232. doi: 10.1128/jvi.72.3.2224-2232.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. Xie L., Metallo C., Warren J., Pilbrough W., Peltier J., Zhong T., Pikus L., Yancy A., Leung J., Aunins J.G., Zhou W. Large-scale propagation of a replication-defective adenovirus vector in stirred-tank bioreactor PER.C6 cell culture under sparging conditions. Biotechnol. Bioeng. 2003;83:45–52. doi: 10.1002/bit.10644. [DOI] [PubMed] [Google Scholar]
  140. Xie L., Pilbrough W., Metallo C., Zhong T., Pikus L., Leung J., Aunins J.G., Zhou W. Serum-free suspension cultivation of PER.C6(R) cells and recombinant adenovirus production under different pH conditions. Biotechnol. Bioeng. 2002;80:569–579. doi: 10.1002/bit.10443. [DOI] [PubMed] [Google Scholar]
  141. Yamaji H., Fukuda H. Growth and death behavior of anchorage-independent animal-cells immobilized within porous support matrices. App. Micro. Biotechnol. 1992;37:244–251. doi: 10.1007/BF00178179. [DOI] [PubMed] [Google Scholar]
  142. Yuk I.H.Y., Olsen M.M., Geyer S., Forestell S.P. Perfusion cultures of human tumor cells: A scalable production platform for oncolytic adenoviral vectors. Biotechnol. Bioeng. 2004;86:637–642. doi: 10.1002/bit.20158. [DOI] [PubMed] [Google Scholar]

Articles from Cytotechnology are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES