The content is available as a PDF (117.3 KB).
References
- Allison DW, Aboytes KA, Fong DK, Leugers SL, Johnson TK, Loke HN, Donahue LM. Development and optimization of cell culture media—genomic and proteomic approaches. BioProcess Int. 2005;3:2–7. [Google Scholar]
- Beale AJ. Cell substrate for killed poliovaccine production. Dev Biol Standard. 1981;47:19–23. [PubMed] [Google Scholar]
- Bebbington CR, Renner G, Thomson S, King D, Abrams D, Yarranton GT. High level expression of a recombinant antibody from myeloma cells using a glutamine synthetase gene as an amplifiable selectable marker. Bio/Technology. 1992;10:169–175. doi: 10.1038/nbt0292-169. [DOI] [PubMed] [Google Scholar]
- Bibila TA, Ranucci CS, Glazomitsky K, Buckland BC, Aunins JG. Monoclonal antibody process development using medium concentrates. Biotechnol Prog. 1994;10:87–96. doi: 10.1021/bp00025a011. [DOI] [PubMed] [Google Scholar]
- Birch JR (2005) Challenges and opportunities in the large scale production of therapeutic proteins. Presented at the 19th ESACT Meeting, Harrogate/U.K., 5th–8th June, 2005
- Birch JR, Thompson PW, Boraston R, Oliver S, Lambert K. The large-scale production of monoclonal antibodies in airlift fermentors. In: Webb C, Mavituna F, editors. Plant and animal cells—process possibilities. Chichester/U.K: Ellis Horwood Ltd.; 1987. pp. 162–171. [Google Scholar]
- Brands R, Visser J, Medema J, Palache AM, Scharrenburg GJM. InfluvacTC: A safe Madin Darby Canine Kidney (MDCK) cell culture-based influenza vaccine. Dev Biol Standard. 1999;98:93–100. [PubMed] [Google Scholar]
- Brown ME, Renner G, Field RP, Hassell T. Process development for the production of recombinant antibodies using the glutamine synthetase (GS) system. Cytotechnology. 1992;9:231–236. doi: 10.1007/BF02521750. [DOI] [PubMed] [Google Scholar]
- Capstick PB, Telling RC, Chapman WG, Stewart DL. Growth of a cloned strain of hamster kidney cells in suspended cultures and their susceptibility to the virus of foot and mouth disease. Nature. 1962;195:1163–1164. doi: 10.1038/1951163a0. [DOI] [PubMed] [Google Scholar]
- Chung JY, Lim SW, Hong YJ, Hwang SO, Lee GM. Effect of doxycycline-regulated calnexin and calreticulin expression on specific thrombopoietin productivity of recombinant Chinese hamster ovary cells. Biotechnol Bioeng. 2004;85:539–546. doi: 10.1002/bit.10919. [DOI] [PubMed] [Google Scholar]
- Davis R, Schooly K, Rasmussen B, Thomas J, Reddy P. Effect of PDI overexpression on recombinant protein secretion in CHO cells. Biotechnol Prog. 2000;16:736–743. doi: 10.1021/bp000107q. [DOI] [PubMed] [Google Scholar]
- Deshpande RR, Wittmann C, Heinzle E. Microplates with integrated oxygen sensing for medium optimization in animal cell culture. Cytotechnology. 2004;46:1–8. doi: 10.1007/s10616-004-6401-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dorner AJ, Wasley LC, Krane MG, Kaufman RJ. Protein retention in the endoplasmic reticulum mediated by GRP78. In: Oka MS, Rupp RG, editors. Cell biology and biotechnology–novel approaches to increased cellular productivity. New York: Springer-Verlag; 1993. pp. 105–113. [Google Scholar]
- Elias CB, Carpentier E, Durocher Y, Bisson L, Wagner R, Kamen A. Improving glucose and glutamine metabolism in human HEK 293 and Trichoplusia ni insect cells engineered to express a cytosolic pyruvate carboxylase. Biotechnol Prog. 2003;19:90–97. doi: 10.1021/bp025572x. [DOI] [PubMed] [Google Scholar]
- Enders JF, Weller TH, Robbins FC. Cultivation of Lansing strain of poliomyelitis virus in culture of various human embryonic tissues. Science. 1949;109:85–87. doi: 10.1126/science.109.2822.85. [DOI] [PubMed] [Google Scholar]
- Falkner K, Gilles ED. Digital image analysis: quantitative evaluation of colored microscopic images of animal cells. In: Merten O-W, Perrin P, Griffiths BJ, editors. New developments and new applications in animal cell technology. Dordrecht/NL: Springer Netherlands; 1998. pp. 317–319. [Google Scholar]
- Franek F, Eckschläger T, Katinger H. Enhancement of monoclonal antibody production by lysine-containing peptides. Biotechnol Prog. 2003;19:169–174. doi: 10.1021/bp020077m. [DOI] [PubMed] [Google Scholar]
- Franek F, Fussenegger M. Survival factor-like activity of small peptides in hybridoma and CHO cells cultures. Biotechnol Prog. 2005;21:96–98. doi: 10.1021/bp0400184. [DOI] [PubMed] [Google Scholar]
- Franek F, Hohenwarter O, Katinger H. Plant protein hydorlysates: preparation of defined peptide fractions promoting growth and production in animal cells cultures. Biotechnol Prog. 2000;16:688–692. doi: 10.1021/bp0001011. [DOI] [PubMed] [Google Scholar]
- Franek F, Katinger H. Specific effects of synthetic oligopeptides on cultured animal cells. Biotechnol Prog. 2002;18:155–158. doi: 10.1021/bp0101278. [DOI] [PubMed] [Google Scholar]
- Gaertner JG, Dhurjati P. Fractional factorial study of hybridoma behavior. 1. Kinetics of growth and antibody production. Biotechnol Prog. 1993a;9:298–308. doi: 10.1021/bp00021a009. [DOI] [PubMed] [Google Scholar]
- Gaertner JG, Dhurjati P. Fractional factorial study of hybridoma behavior. 2. Kinetics of nutrient uptake and waste production. Biotechnol Prog. 1993b;9:309–316. doi: 10.1021/bp00021a010. [DOI] [PubMed] [Google Scholar]
- Ge X, Hanson M, Shen H, Kostov Y, Brorson KA, Frey DD, Moreira AR, Rao G (2006) Validation of an optical sensor-based high throuput bioreactor system for mammalian cell culture. J. Biotechnol. DOI:10.1016:j.jbiotec.2005.12.009 [DOI] [PubMed]
- Gilbert P-A, Comanita L, Barrett J, Peters A, Szabat M, McFadden G, Dekaban GA. Current status for high titre poxvirus stock preparation in CEF under serum-free medium conditions: implication for vaccine development. Cytotechnology. 2005;48:79–88. doi: 10.1007/s10616-005-3795-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Girard P, Jordan M, Tsao M, Wurm FM. Small-scale bioreactor system for process development and optimisation. Biochem Eng J. 2001;7:117–119. doi: 10.1016/S1369-703X(00)00110-8. [DOI] [PubMed] [Google Scholar]
- Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961;25:585–621. doi: 10.1016/0014-4827(61)90192-6. [DOI] [PubMed] [Google Scholar]
- Hsu TA, Betenbaugh MJ. Coexpression of molecular chaperone BiP improves immunoglobulin solubility and IgG secretion from Trichoplusia ni insect cells. Biotechnol Prog. 1997;13:96–104. doi: 10.1021/bp960088d. [DOI] [PubMed] [Google Scholar]
- Irani N, Wirth M, Heuvel J, Wagner R. Improvement of the primary metabolism of cell cultures by introducing a new cytoplasmic pyruvate carboxylase reaction. Biotechnol Bioeng. 1999;6:711–721. doi: 10.1002/(sici)1097-0290(1999)66:4<238::aid-bit5>3.0.co;2-6. [DOI] [PubMed] [Google Scholar]
- Jacobs JP, Jones CM, Baille JP. Characteristics of a human diploid cell designated MRC-5. Nature. 1970;227:168–170. doi: 10.1038/227168a0. [DOI] [PubMed] [Google Scholar]
- Jeong DW, Kim TS, Cho IT, Kim IY. Modification of glycolysis affects cell sensitivity to apoptosis induced by oxidative stress and mediated by mitochondria. Biochem Biophys Res Commun. 2004;313:984–991. doi: 10.1016/j.bbrc.2003.12.033. [DOI] [PubMed] [Google Scholar]
- Joeris K, Frerichs J-G, Konstantinov K, Scheper T. In-situ microscopy: online process monitoring of mammalian cell cultures. Cytotechnology. 2002;38:129–134. doi: 10.1023/A:1021170502775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kallel H, Zaïri H, Rourou S, Essafi M, Barbouche R, Dellagi K, Fathallah DM. Use of Taguchi’s methods as a basis to optimize hybridoma cell line growth and antibody production in a spinner flask. Cytotechnology. 2002;39:9–14. doi: 10.1023/A:1022437514334. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kistner O, Barrett PN, Mundt W, Reiter M, Schober-Bendixen S, Eder G, Dorner F. Development of a Vero cell-derived influenza whole virus vaccine. Dev Biol Standard. 1999;98:101–110. [PubMed] [Google Scholar]
- Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256:495–497. doi: 10.1038/256495a0. [DOI] [PubMed] [Google Scholar]
- Makoschey B, Patel JR, Gelder PTJA. Serum-free produced Bovine Herpesvirus type 1 and Bovine Parainfluenza type 3 virus vaccines are efficacious and safe. Cytotechnology. 2002;39:139–145. doi: 10.1023/A:1023982003258. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Merten O-W. Development of serum-free media for cell growth and production of viruses/viral vaccines—safety issues of animal products used in serum-free media. Dev Biol. 2002;111:235–259. [PubMed] [Google Scholar]
- Merten O-W, Hannoun C, Manuguerra J-C, Ventre F, Petres S. Development of a serum-free cell culture based human influenza virus vaccine production process. In: Cohen S, Shafferman A, editors. Novel strategies in the design and production of vaccines. New York: Plenum Press; 1996. pp. 141–151. [Google Scholar]
- Merten O-W, Palfi GE, Stäheli J, Steiner J. Invasive infrared sensor for the determination of the cell number in a continuons fermentation of hybrdiomas. Dev Biol Standard. 1987;66:357–360. [PubMed] [Google Scholar]
- Merten O-W, Wu R, Crainic R. Evaluation of the serum-free medium MDSS2 for the production of polio virus on Vero cells in bioreactors. Cytotechnology. 1997;25:35–44. doi: 10.1023/A:1007999313566. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Montagnon BJ, Fanget B, Nicolas AJ. The large-scale cultivation of Vero cells in micro-carrier culture for virus vaccine production preliminary results for killed poliovirus vaccine. Dev Biol Standard. 1981;47:55–64. [PubMed] [Google Scholar]
- Montagnon BJ, Fanget B, Vincent-Falquet JC. Thousand liter scale microcarrier culture of Vero cells for killed polio virus vaccine. Promising results. Dev Biol Standard. 1984a;55:37–42. [PubMed] [Google Scholar]
- Montagnon BJ, Fanget B, Vincent-Falquet JC. Industrial-scale production of inactivated poliovirus vaccine prepared by culture of Vero cells on microcarrier. Rev Infect Dis. 1984;6(S2):210–213. doi: 10.1093/clinids/6.supplement_2.s341. [DOI] [PubMed] [Google Scholar]
- Nicolas AJ, Patet J, Vincent-Falquet JC, Branche R, Delaiti P, Montagnon B, Peyron L, Soulebot JP. Production of inactivated rabies vaccine for human use on WI38 diploid cells. Results of potency tests, stability of the vaccine in liquid and freeze-dried forms. Dev Biol Standard. 1978;40:17–24. [PubMed] [Google Scholar]
- Pay TWF, Boge A, Menard FJRR, Radlett PJ. Production of rabies vaccine by industrial scale BHK21 suspension cell culture process. Dev Biol Standard. 1985;60:171–174. [PubMed] [Google Scholar]
- Petricciani JC. The acceptability of continuous cell lines: a personal and historical perspective. In: Beuvery EC, Griffiths JB, Zeijlemaker WP, editors. Animal cell technology. Developments towards the 21st century. Dordrecht/NL: Springer Netherlands; 1995. pp. 605–609. [Google Scholar]
- Preininger A, Schlokat U, Mohr G, Himmelspach M, Stichler V, Kyd-Rebenburg A, Plaimauer B, Turecek PL, Schwarz H-P, Wernhart W, Fischer BE, Dorner F. Strategies for recombinant furin employment in a biotechnological process; complete target protein precursor cleavage. Cytotechnology. 1999;30:1–15. doi: 10.1023/A:1008030407679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pullen K, Johnston MD, Philips AW, Ball GD, Finter WB (1984) Very large scale suspension cultures of mammalian cells. Dev Biol Standard 60: 175–177 [PubMed]
- Puskeiler R, Kaufmann K, Weuster-Botz D. Development, parallelization, and automation of a gas-inducing millilitre-scale bioreactor for high-throughput bioprocess design (HTBD) Biotechnol Bioeng. 2005;89:512–523. doi: 10.1002/bit.20352. [DOI] [PubMed] [Google Scholar]
- Radlett PJ, Pay TWF, Garland AJM. The use of BHK suspension cells for the commercial production of foot and mouth disease vaccines over a twenty year period. Dev Biol Standard. 1985;60:163–170. [PubMed] [Google Scholar]
- Reichert J, Pavlou A. Monoclonal antibodies market. Nat Rev. 2004;3:383–384. doi: 10.1038/nrd1386. [DOI] [PubMed] [Google Scholar]
- Sanders PG, Hussein A, Coggins L, Wilson R. Gene amplification: the Chinese hamster glutamine synthetase gene. Dev Biol Standard. 1987;66:55–63. [PubMed] [Google Scholar]
- Stäheli J. Variable screening and optimization. Dev Biol Standard. 1987;66:143–153. [PubMed] [Google Scholar]
- Stones PB. Production and control of live oral poliovirus vaccine in WI-38 human diploid cells. Dev Biol Standard. 1977;37:251–253. [PubMed] [Google Scholar]
- Tanner M (2002) Experiences in large scale microcarrier fermentation. Presented at the first Microcarrier Workshop on Microcarriers for Large Scale Cell Culture, organized by Amersham Pharmacia, Rome/I, 3rd–4th October, 2002
- Urabe M, Ding C, Kotin RM. Insect cells as a factory to produce adeno-associated virus type 2 vectors. Hum Gene Ther. 2002;13:1925–1943. doi: 10.1089/10430340260355347. [DOI] [PubMed] [Google Scholar]
- Steenis G, Wezel AL, Groot IGM, Kruijt BC. Use of captive-bred monkeys for vaccine production. Dev Biol Standard. 1980;45:99–105. [PubMed] [Google Scholar]
- Wezel AL, Steenis G, Hannik ChA, Cohen H. New approach to the production of concentrated and purified inactivated polio and rabies tissue culture vaccines. Dev Biol Standard. 1978;41:159–168. [PubMed] [Google Scholar]
- Weuster-Botz D, Puskeiler R, Kusterer A, Kaufmann K, John GT, Arnold M (2005) Methods and milliliter-scale device for high-throughput bioprocess design. Bioprocess Biosyst Eng Doi:10.1007/s00449-005-0011-6 [DOI] [PubMed]
- Wiktor TJ, Fernandes MV, Koprowski H. Cultivation of rabies virus in human diploid cell strain WI-38. J Immunol. 1964;93:353–366. [PubMed] [Google Scholar]
- Wiktor TJ, Sokol F, Kuwert E, Koprowski H. Immunogenicity of concentrated and purified rabies vaccine of tissue culture origin. Proc Soc Exp Biol Med. 1969;131:799–805. doi: 10.3181/00379727-131-33981. [DOI] [PubMed] [Google Scholar]