Skip to main content
The Journal of Headache and Pain logoLink to The Journal of Headache and Pain
. 2010 Jul 13;11(6):497–503. doi: 10.1007/s10194-010-0239-7

Changes in visual-evoked potential habituation induced by hyperventilation in migraine

Gianluca Coppola 1,, Antonio Currà 2, Simona Liliana Sava 3, Alessia Alibardi 2, Vincenzo Parisi 1,5, Francesco Pierelli 3,4, Jean Schoenen 6
PMCID: PMC3476226  PMID: 20625915

Abstract

Hyperventilation is often associated with stress, an established trigger factor for migraine. Between attacks, migraine is associated with a deficit in habituation to visual-evoked potentials (VEP) that worsens just before the attack. Hyperventilation slows electroencephalographic (EEG) activity and decreases the functional response in the occipital cortex during visual stimulation. The neural mechanisms underlying deficient-evoked potential habituation in migraineurs remain unclear. To find out whether hyperventilation alters VEP habituation, we recorded VEPs before and after experimentally induced hyperventilation lasting 3 min in 18 healthy subjects and 18 migraine patients between attacks. We measured VEP P100 amplitudes in six sequential blocks of 100 sweeps and habituation as the change in amplitude over the six blocks. In healthy subjects, hyperventilation decreased VEP amplitude in block 1 and abolished the normal VEP habituation. In migraine patients, hyperventilation further decreased the already low block 1 amplitude and worsened the interictal habituation deficit. Hyperventilation worsens the habituation deficit in migraineurs possibly by increasing dysrhythmia in the brainstem-thalamo-cortical network.

Keywords: Migraine, Hyperventilation, Visual-evoked potentials, Habituation, Brainstem, Thalamo-cortical activity

Full Text

The Full Text of this article is available as a PDF (251.4 KB).

Conflict of interest

None.

References

  • 1.Amery WK, Vandenbergh V. What can precipitating factors teach us about the pathogenesis of migraine? Headache. 1987;27:146–150. doi: 10.1111/j.1526-4610.1987.hed2703146.x. [DOI] [PubMed] [Google Scholar]
  • 2.Friedman SD, Jensen JE, Frederick BB, Artru AA, Renshaw PF, et al. Brain changes to hypocapnia using rapidly interleaved phosphorus-proton magnetic resonance spectroscopy at 4 T. J Cereb Blood Flow Metab. 2007;27:646–653. doi: 10.1038/sj.jcbfm.9600383. [DOI] [PubMed] [Google Scholar]
  • 3.Friedman SD, Mathis CM, Hayes C, Renshaw P, Dager SR. Brain pH response to hyperventilation in panic disorder: preliminary evidence for altered acid-base regulation. Am J Psychiatry. 2006;163:710–715. doi: 10.1176/appi.ajp.163.4.710. [DOI] [PubMed] [Google Scholar]
  • 4.Rijen PC, Luyten PR, Sprenkel JW, Kraaier V, Huffelen AC, et al. 1H and 31P NMR measurement of cerebral lactate, high-energy phosphate levels, and pH in humans during voluntary hyperventilation: associated EEG, capnographic, and Doppler findings. Magn Reson Med. 1989;10:182–193. doi: 10.1002/mrm.1910100204. [DOI] [PubMed] [Google Scholar]
  • 5.Jensen KE, Thomsen C, Henriksen O. In vivo measurement of intracellular pH in human brain during different tensions of carbon dioxide in arterial blood. A 31P-NMR study. Acta Physiol Scand. 1988;134:295–298. doi: 10.1111/j.1748-1716.1988.tb08492.x. [DOI] [PubMed] [Google Scholar]
  • 6.Zwiener U, Löbel S, Rother M, Funke M. Quantitative topographical analysis of EEG during nonstandardized and standardized hyperventilation. J Clin Neurophysiol. 1998;15:521–528. doi: 10.1097/00004691-199811000-00011. [DOI] [PubMed] [Google Scholar]
  • 7.Matteo RS, Ornstein E, Schwartz AE, Young WL, Weinstein J, et al. Effects of hypocarbia on the pharmacodynamics of sufentanil in humans. Anesth Analg. 1992;75:186–192. doi: 10.1213/00000539-199208000-00006. [DOI] [PubMed] [Google Scholar]
  • 8.Schubert A, Drummond JC. The effect of acute hypocapnia on human median nerve somatosensory evoked responses. Anesth Analg. 1986;65:240–244. doi: 10.1213/00000539-198603000-00004. [DOI] [PubMed] [Google Scholar]
  • 9.Huttunen J, Tolvanen H, Heinonen E, Voipio J, Wikström H, et al. Effects of voluntary hyperventilation on cortical sensory responses. Electroencephalographic and magnetoencephalographic studies. Exp Brain Res. 1999;125:248–254. doi: 10.1007/s002210050680. [DOI] [PubMed] [Google Scholar]
  • 10.Priori A, Berardelli A, Mercuri B, Inghilleri M, Manfredi M. The effect of hyperventilation on motor cortical inhibition in humans: a study of the electromyographic silent period evoked by transcranial brain stimulation. Electroencephalogr Clin Neurophysiol. 1995;97:69–72. doi: 10.1016/0924-980X(94)00224-U. [DOI] [PubMed] [Google Scholar]
  • 11.Sparing R, Dafotakis M, Buelte D, Meister IG, Noth J. Excitability of human motor and visual cortex before, during, and after hyperventilation. J Appl Physiol. 2007;102:406–411. doi: 10.1152/japplphysiol.00770.2006. [DOI] [PubMed] [Google Scholar]
  • 12.Posse S, Kemna LJ, Elghahwagi B, Wiese S, Kiselev VG. Effect of graded hypo- and hypercapnia on fMRI contrast in visual cortex: quantification of T(*)(2) changes by multiecho EPI. Magn Reson Med. 2001;46:264–271. doi: 10.1002/mrm.1187. [DOI] [PubMed] [Google Scholar]
  • 13.Weckesser M, Posse S, Olthoff U, Kemna L, Dager S, et al. Functional imaging of the visual cortex with bold-contrast MRI: hyperventilation decreases signal response. Magn Reson Med. 1999;41:213–216. doi: 10.1002/(SICI)1522-2594(199901)41:1<213::AID-MRM31>3.0.CO;2-S. [DOI] [PubMed] [Google Scholar]
  • 14.Burykh EA. Interaction of hypocapnia, hypoxia, brain blood flow, and brain electrical activity in voluntary hyperventilation in humans. Neurosci Behav Physiol. 2008;38:647–659. doi: 10.1007/s11055-008-9029-y. [DOI] [PubMed] [Google Scholar]
  • 15.Kraaier V, Huffelen AC, Wieneke GH. Changes in quantitative EEG and blood flow velocity due to standardized hyperventilation; a model of transient ischaemia in young human subjects. Electroencephalogr Clin Neurophysiol. 1988;70:377–387. doi: 10.1016/0013-4694(88)90015-6. [DOI] [PubMed] [Google Scholar]
  • 16.Groves PM, Thompson RF. Habituation: a dual-process theory. Psychol Rev. 1970;77:419–450. doi: 10.1037/h0029810. [DOI] [PubMed] [Google Scholar]
  • 17.Sappey-Marinier D, Calabrese G, Fein G, Hugg JW, Biggins C, et al. Effect of photic stimulation on human visual cortex lactate and phosphates using 1H and 31P magnetic resonance spectroscopy. J Cereb Blood Flow Metab. 1992;12:584–592. doi: 10.1038/jcbfm.1992.82. [DOI] [PubMed] [Google Scholar]
  • 18.Bohotin V, Fumal A, Vandenheede M, Gérard P, Bohotin C, et al. Effects of repetitive transcranial magnetic stimulation on visual evoked potentials in migraine. Brain. 2002;125:912–922. doi: 10.1093/brain/awf081. [DOI] [PubMed] [Google Scholar]
  • 19.Coppola G, Serrao M, Currà A, Di Lorenzo C, Vatrika M, et al. Tonic pain abolishes cortical habituation of visual evoked potentials in healthy subjects. J Pain. 2010;11:291–296. doi: 10.1016/j.jpain.2009.08.012. [DOI] [PubMed] [Google Scholar]
  • 20.Ozkul Y, Bozlar S. Effects of fluoxetine on habituation of pattern reversal visually evoked potentials in migraine prophylaxis. Headache. 2002;42:582–587. doi: 10.1046/j.1526-4610.2002.02144.x. [DOI] [PubMed] [Google Scholar]
  • 21.Schoenen J. Deficient habituation of evoked cortical potentials in migraine: a link between brain biology, behavior and trigeminovascular activation? Biomed Pharmacother. 1996;50:71–78. doi: 10.1016/0753-3322(96)84716-0. [DOI] [PubMed] [Google Scholar]
  • 22.Coppola G, Pierelli F, Schoenen J. Habituation and migraine. Neurobiol Learn Mem. 2009;92:249–259. doi: 10.1016/j.nlm.2008.07.006. [DOI] [PubMed] [Google Scholar]
  • 23.Coppola G, Currà A, Serrao M, Di Lorenzo C, Gorini M, et al. Lack of cold pressor test-induced effect on visual-evoked potentials in migraine. J Headache Pain. 2010;11:115–121. doi: 10.1007/s10194-009-0177-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Kraaier V, Huffelen AC, Wieneke GH, Worp HB, Bär PR. Quantitative EEG changes due to cerebral vasoconstriction. Indomethacin versus hyperventilation-induced reduction in cerebral blood flow in normal subjects. Electroencephalogr Clin Neurophysiol. 1992;82:208–212. doi: 10.1016/0013-4694(92)90169-I. [DOI] [PubMed] [Google Scholar]
  • 25.Hoshi Y, Okuhara H, Nakane S, Hayakawa K, Kobayashi N, et al. Re-evaluation of the hypoxia theory as the mechanism of hyperventilation-induced EEG slowing. Pediatr Neurol. 1999;21:638–643. doi: 10.1016/S0887-8994(99)00063-6. [DOI] [PubMed] [Google Scholar]
  • 26.Patel VM, Maulsby RL. How hyperventilation alters the electroencephalogram: a review of controversial viewpoints emphasizing neurophysiological mechanisms. J Clin Neurophysiol. 1987;4:101–120. doi: 10.1097/00004691-198704000-00001. [DOI] [PubMed] [Google Scholar]
  • 27.Koch SP, Koendgen S, Bourayou R, Steinbrink J, Obrig H. Individual alpha-frequency correlates with amplitude of visual evoked potential and hemodynamic response. Neuroimage. 2008;41:233–242. doi: 10.1016/j.neuroimage.2008.02.018. [DOI] [PubMed] [Google Scholar]
  • 28.Gavriysky VS. Influence of a twofold voluntary hyperventilation on visually evoked cortical potentials and human pupillogram. Doc Ophthalmol. 1991;77:213–224. doi: 10.1007/BF00161369. [DOI] [PubMed] [Google Scholar]
  • 29.Davies HD, Carroll WM, Mastaglia FL. Effects of hyperventilation on pattern-reversal visual evoked potentials in patients with demyelination. J Neurol Neurosurg Psychiatry. 1986;49:1392–1396. doi: 10.1136/jnnp.49.12.1392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Steriade M, Llinás RR. The functional states of the thalamus and the associated neuronal interplay. Physiol Rev. 1988;68:649–742. doi: 10.1152/physrev.1988.68.3.649. [DOI] [PubMed] [Google Scholar]
  • 31.Lopes da Silva F. Neural mechanisms underlying brain waves: from neural membranes to networks. Electroencephalogr Clin Neurophysiol. 1991;79:81–93. doi: 10.1016/0013-4694(91)90044-5. [DOI] [PubMed] [Google Scholar]
  • 32.Sherwin I. Differential effects of hyperventilation on the excitability of intact and isolated cortex. Electroencephalogr Clin Neurophysiol. 1965;18:599–607. doi: 10.1016/0013-4694(65)90077-5. [DOI] [PubMed] [Google Scholar]
  • 33.Sherwin I. Alterations in the non-specific cortical afference during hyperventilation. Electroencephalogr Clin Neurophysiol. 1967;23:532–538. doi: 10.1016/0013-4694(67)90019-3. [DOI] [PubMed] [Google Scholar]
  • 34.Bonvallet M, Dell P, Hiebel G. Sympathetic tonus and cortical electrical activity. Electroencephalogr Clin Neurophysiol. 1954;6:119–144. doi: 10.1016/0013-4694(54)90011-5. [DOI] [PubMed] [Google Scholar]
  • 35.Bonvallet M, Dell P. Somatic functions of the nervous system. Annu Rev Physiol. 1956;18:309–338. doi: 10.1146/annurev.ph.18.030156.001521. [DOI] [PubMed] [Google Scholar]
  • 36.Munk MH, Roelfsema PR, König P, Engel AK, Singer W. Role of reticular activation in the modulation of intracortical synchronization. Science. 1996;272:271–274. doi: 10.1126/science.272.5259.271. [DOI] [PubMed] [Google Scholar]
  • 37.Destexhe A, Sejnowski TJ. Interactions between membrane conductances underlying thalamocortical slow-wave oscillations. Physiol Rev. 2003;83:1401–1453. doi: 10.1152/physrev.00012.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Chesler M, Kaila K. Modulation of pH by neuronal activity. Trends Neurosci. 1992;15:396–402. doi: 10.1016/0166-2236(92)90191-A. [DOI] [PubMed] [Google Scholar]
  • 39.Mäkiranta MJ, Ruohonen J, Suominen K, Sonkajärvi E, Salomäki T, et al. BOLD-contrast functional MRI signal changes related to intermittent rhythmic delta activity in EEG during voluntary hyperventilation-simultaneous EEG and fMRI study. Neuroimage. 2004;22:222–231. doi: 10.1016/j.neuroimage.2004.01.004. [DOI] [PubMed] [Google Scholar]
  • 40.Coppola G, Ambrosini A, Di Clemente L, Magis D, Fumal A, et al. Interictal abnormalities of gamma band activity in visual evoked responses in migraine: an indication of thalamocortical dysrhythmia? Cephalalgia. 2007;27:1360–1367. doi: 10.1111/j.1468-2982.2007.01466.x. [DOI] [PubMed] [Google Scholar]
  • 41.Panconesi A. Serotonin and migraine: a reconsideration of the central theory. J Headache Pain. 2008;9:267–276. doi: 10.1007/s10194-008-0058-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Llinás RR, Ribary U, Jeanmonod D, Kronberg E, Mitra PP. Thalamocortical dysrhythmia: A neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci USA. 1999;96:15222–15227. doi: 10.1073/pnas.96.26.15222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Llinás RR, Steriade M. Bursting of thalamic neurons and states of vigilance. J Neurophysiol. 2006;95:3297–3308. doi: 10.1152/jn.00166.2006. [DOI] [PubMed] [Google Scholar]
  • 44.Mesulam MM. Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann Neurol. 1990;28:597–613. doi: 10.1002/ana.410280502. [DOI] [PubMed] [Google Scholar]
  • 45.Levine M, Carlton S, Becker D, Miller J, Hayes R. Encoding of arterial CO2 tensions by neurons in the region of the locus ceruleus in the cat. In: Heistad DD, Marcus ML, editors. Cerebral blood flow. Amsterdam: North-Holland; 1982. pp. 503–508. [Google Scholar]
  • 46.Haxhiu MA, Tolentino-Silva F, Pete G, Kc P, Mack SO. Monoaminergic neurons, chemosensation and arousal. Respir Physiol. 2001;129:191–209. doi: 10.1016/S0034-5687(01)00290-0. [DOI] [PubMed] [Google Scholar]
  • 47.Reddy SV, Yaksh TL, Anderson RE, Sundt TM. Effect in cat of locus coeruleus lesions on the response of cerebral blood flow and cardiac output to altered paCO2. Brain Res. 1986;365:278–288. doi: 10.1016/0006-8993(86)91639-2. [DOI] [PubMed] [Google Scholar]
  • 48.Petroff OA, Prichard JW, Behar KL, Rothman DL, Alger JR, et al. Cerebral metabolism in hyper- and hypocarbia: 31P and 1H nuclear magnetic resonance studies. Neurology. 1985;35:1681–1688. doi: 10.1212/wnl.35.12.1681. [DOI] [PubMed] [Google Scholar]
  • 49.Judit A, Sándor PS, Schoenen J. Habituation of visual and intensity dependence of auditory evoked cortical potentials tends to normalize just before and during the migraine attack. Cephalalgia. 2000;20:714–719. doi: 10.1111/j.1468-2982.2000.00122.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Headache and Pain are provided here courtesy of BMC

RESOURCES