Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1982 Sep;37(3):1101–1111. doi: 10.1128/iai.37.3.1101-1111.1982

Pyridine analogs inhibit the glucosyltransferase of Streptococcus mutans.

S Thaniyavarn, K G Taylor, S Singh, R J Doyle
PMCID: PMC347654  PMID: 6215355

Abstract

Soluble glucan synthesis catalyzed by dextransucrase preparations from Streptococcus mutans 6715 were inhibited by pyridoxal-5-phosphate and several other pyridine analogs, including pyridoxine, pyridoxamine, pyridoxamine-5-phosphate, pyridoxal, and 4-pyridoxic acid. Pyridine and pyridine-4-carboxaldehyde were not effective inhibitors of the enzyme. Kinetic analyses suggested that pyridoxal-5-phosphate is a noncompetitive inhibitor of dextransucrase. The inactivation was dependent on time, pyridoxal-5-phosphate concentration, and hydrogen ion concentration. Apparent Ki values were 4.9 mM at pH 7.0 and 4.2 mM at pH 5.5. Dextransucrase activity could be restored by dialysis to remove the inhibitors. Maximum inhibition was observed after a 120-min incubation of the enzyme with pyridoxal-5-phosphate. The pH optima for inhibition by pyridoxal-5-phosphate were 4 and 7. The sucrose-dependent adherence of S. mutans cells to saliva-coated hydroxylapatite beads was also inhibited by pyridoxal-5-phosphate but only marginally by the other pyridine anatogs. In addition, pyridoxal-5-phosphate markedly reduced the rate of acid production by intact S. mutans cells from sucrose or glucose substrates. Another pyridoxal-5-phosphate analog, 2-methyl-5-hydroxypyridine, was also effective in preventing the production of acid by S. mutans from sucrose or glucose. When S. mutans cells were preincubated with pyridoxal-5-phosphate or pyridine analogs, significant reductions in the rate of D-glucose uptake were observed. It is suggested that the inhibition of dextransucrase occurs because of a change iun enzyme conformation which results from the binding of the pyridine derivatives. The results suggest that pyridoxal-5-phosphate or structural analogs may ultimately be useful in reducing the incidence of dental caries.

Full text

PDF
1101

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahrens M. L., Maass G., Schuster P., Winkler H. Kinetic study of the hydration mechanism of vitamin B6 and related compounds. J Am Chem Soc. 1970 Oct 21;92(21):6134–6139. doi: 10.1021/ja00724a006. [DOI] [PubMed] [Google Scholar]
  2. Anai M., Lai C. Y., Horecker B. L. The pyridoxal phosphate-binding site of rabbit muscle aldolase. Arch Biochem Biophys. 1973 Jun;156(2):712–719. doi: 10.1016/0003-9861(73)90324-x. [DOI] [PubMed] [Google Scholar]
  3. Chen S. S., Engel P. C. The equilibrium position of the reaction of bovine liver glutamate dehydrogenase with pyridoxal5'-phosphate. A demonstration that covalent modification with this reagent completely abolishes catalytic activity. Biochem J. 1975 May;147(2):351–358. doi: 10.1042/bj1470351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chludzinski A. M., Germaine G. R., Schachtele C. F. Purification and properties of dextransucrase from Streptococcus mutans. J Bacteriol. 1974 Apr;118(1):1–7. doi: 10.1128/jb.118.1.1-7.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chludzinski A. M., Germaine G. R., Schachtele C. F. Streptoccus mutans dextransucrase: purification, properties, and requirement for primer dextran. J Dent Res. 1976 Apr;55(Spec No):C75–C86. doi: 10.1177/002203457605500329011. [DOI] [PubMed] [Google Scholar]
  6. Clark W. B., Gibbons R. J. Influence of salivary components and extracellular polysaccharide synthesis from sucrose on the attachment of Streptococcus mutans 6715 to hydroxyapatite surfaces. Infect Immun. 1977 Nov;18(2):514–523. doi: 10.1128/iai.18.2.514-523.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cole M. F., Eastoe J. E., Curtis M. A., Korts D. C., Bowen W. H. Effects of pyridoxine, phytate and invert sugar on plaque composition and caries activity in the monkey (Macaca fascicularis). Caries Res. 1980;14(1):1–15. doi: 10.1159/000260428. [DOI] [PubMed] [Google Scholar]
  8. De Stoppelaar J. D., Van Houte J., Backer DIRKS O. The effect of carbohydrate restriction on the presence of Streptococcus mutans, Streptococcus sanguis and iodophilic polysaccharide-producing bacteria in human dental plaque. Caries Res. 1970;4(2):114–123. doi: 10.1159/000259633. [DOI] [PubMed] [Google Scholar]
  9. Forrey A. W., Sevilla C. L., Saari J. C., Fischer E. H. Sequence of a segment of muscle glycogen phosphorylase containing the pyridoxal 5'-phosphate binding site. Biochemistry. 1971 Aug 3;10(16):3132–3140. doi: 10.1021/bi00792a023. [DOI] [PubMed] [Google Scholar]
  10. Fukushima K., Motoda R., Ikeda T. Effects of exogenous insoluble glucan primer on insoluble glucan synthesis by Streptococcus mutans. J Dent Res. 1981 Sep;60(9):1707–1712. doi: 10.1177/00220345810600091201. [DOI] [PubMed] [Google Scholar]
  11. Germaine G. R., Schachtele C. F., Chludzinski A. M. Rapid filter paper assay for the dextransucrase activity from Streptococcus mutans. J Dent Res. 1974 Nov-Dec;53(6):1355–1360. doi: 10.1177/00220345740530061101. [DOI] [PubMed] [Google Scholar]
  12. Germaine G. R., Schachtele C. F. Streptococcus mutans dextransucrase: mode of interaction with high-molecular-weight dextran and role in cellular aggregation. Infect Immun. 1976 Feb;13(2):365–372. doi: 10.1128/iai.13.2.365-372.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hamada S., Slade H. D. Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol Rev. 1980 Jun;44(2):331–384. doi: 10.1128/mr.44.2.331-384.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Harlander S. K., Schachtele C. F. Streptococcus mutans dextransucrase: stimulation of glucan formation by phosphoglycerides. Infect Immun. 1978 Feb;19(2):450–456. doi: 10.1128/iai.19.2.450-456.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Inoue M., Smith E. E. Specific inhibition of glucosyltransferase of Streptococcus mutans. Carbohydr Res. 1980 Apr 1;80(1):163–177. doi: 10.1016/s0008-6215(00)85323-9. [DOI] [PubMed] [Google Scholar]
  16. KOEPSELL H. J., TSUCHIYA H. M., HELLMAN N. N., KAZENKO A., HOFFMAN C. A., SHARPE E. S., JACKSON R. W. Enzymatic synthesis of dextran; acceptor specificity and chain initiation. J Biol Chem. 1953 Feb;200(2):793–801. [PubMed] [Google Scholar]
  17. Kuramitsu H. K., Wondrack L., McGuinness M. Interaction of Streptococcus mutans glucosyltransferases with teichoic acids. Infect Immun. 1980 Aug;29(2):376–382. doi: 10.1128/iai.29.2.376-382.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  19. Milhausen M., Levy H. R. Evidence for an essential lysine in glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides. Eur J Biochem. 1975 Jan 2;50(2):453–461. doi: 10.1111/j.1432-1033.1975.tb09823.x. [DOI] [PubMed] [Google Scholar]
  20. Mobley H. L., Doyle R. J., Streips U. N., Langemeier S. O. Transport and incorporation of N-acetyl-D-glucosamine in Bacillus subtilis. J Bacteriol. 1982 Apr;150(1):8–15. doi: 10.1128/jb.150.1.8-15.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Montville T. J., Cooney C. L., Sinskey A. J. Streptococcus mutans dextransucrase: a review. Adv Appl Microbiol. 1978;24:55–84. doi: 10.1016/s0065-2164(08)70636-1. [DOI] [PubMed] [Google Scholar]
  22. Nesbitt W. E., Doyle R. J., Taylor K. G., Staat R. H., Arnold R. R. Positive coooperativity in the binding of Streptococcus sanguis to hydroxylapatite. Infect Immun. 1982 Jan;35(1):157–165. doi: 10.1128/iai.35.1.157-165.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nesbitt W. E., Staat R. H., Rosan B., Taylor K. G., Doyle R. J. Association of protein with the cell wall of Streptococcus mutans. Infect Immun. 1980 Apr;28(1):118–126. doi: 10.1128/iai.28.1.118-126.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Newbrun E., Finzen F., Sharma M. Inhibition of adherence of Streptococcus mutans to glass surfaces. Caries Res. 1977;11(3):153–159. doi: 10.1159/000260261. [DOI] [PubMed] [Google Scholar]
  25. Ono K., Nuessle D. W., Smith E. C. Oxidized saccharides as inhibitors of alpha-glucan synthesis by Streptococcus mutans glucosyltransferase. Carbohydr Res. 1981 Jan 15;88(1):119–134. doi: 10.1016/s0008-6215(00)84606-6. [DOI] [PubMed] [Google Scholar]
  26. Parsons J. C. Chemotherapy of dental plaque--a review. J Periodontol. 1974 Mar;45(3):177–186. doi: 10.1902/jop.1974.45.3.177. [DOI] [PubMed] [Google Scholar]
  27. Raetz C. R., Auld D. S. Schiff bases of pyridoxal phosphate with active center lysines of ribonuclease A. Biochemistry. 1972 Jun 6;11(12):2229–2236. doi: 10.1021/bi00762a004. [DOI] [PubMed] [Google Scholar]
  28. Reiber H. Photochemical reactions of vitamin B 6 compounds, isolation and properties of products. Biochim Biophys Acta. 1972 Sep 15;279(2):310–315. doi: 10.1016/0304-4165(72)90148-1. [DOI] [PubMed] [Google Scholar]
  29. STEINMAN R. R., HARDINGE M. G. The effect of pyridoxine and injected carbohydrate on incidence of caries, dentinal circulation related to diet. J Dent Res. 1958 Sep-Oct;37(5):874–879. doi: 10.1177/00220345580370051601. [DOI] [PubMed] [Google Scholar]
  30. Staat R. H., Langley S. D., Doyle R. J. Streptococcus mutans adherence: presumptive evidence for protein-mediated attachment followed by glucan-dependent cellular accumulation. Infect Immun. 1980 Feb;27(2):675–681. doi: 10.1128/iai.27.2.675-681.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Staat R. H., Schachtele C. F. Evaluation of dextranase production by the cariogenic bacterium Streptococcus mutans. Infect Immun. 1974 Feb;9(2):467–469. doi: 10.1128/iai.9.2.467-469.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Terleckyj B., Willett N. P., Shockman G. D. Growth of several cariogenic strains of oral streptococci in a chemically defined medium. Infect Immun. 1975 Apr;11(4):649–655. doi: 10.1128/iai.11.4.649-655.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Thaniyavarn S., Singh S., Maynard C. M., Taylor K. G., Doyle R. J. Amino sugars: a new class of inhibitors of dextransucrase. Carbohydr Res. 1981 Oct 1;96(1):134–137. doi: 10.1016/s0008-6215(00)84706-0. [DOI] [PubMed] [Google Scholar]
  34. Van Houte J., Upeslacis V. N., Jordan H. V., Skobe Z., Green D. B. Role of sucrose in colonization of Streptococcus mutans in conventional Sprague-Dawley rats. J Dent Res. 1976 Mar-Apr;55(2):202–215. doi: 10.1177/00220345760550020801. [DOI] [PubMed] [Google Scholar]
  35. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES